簡易檢索 / 詳目顯示

研究生: 林精良
Jing-Liang Lin
論文名稱: 菱形十二面體的星狀多面體
The Stellations of Rhombic Dodecahedron
指導教授: 全任重
Jen-Chung Chuan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 菱形十二面體星狀多面體
外文關鍵詞: Rhombic dodecahedron, Stellation
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    菱形十二面體一共有三個星狀多面體。第一個菱形十二面體的星狀多面體叫做Escher's solid,第二個菱形十二面體的星狀多面體可以藉由Escher's solid建構而成,第三個菱形十二面體的星狀多面體可以藉由第二個菱形十二面體的星狀多面體建構而成。外接第一個菱形十二面體的星狀多面體的最小凸多面體是cuboctahedron,外接第三個菱形十二面體的星狀多面體的最小凸多面體是truncated octahedron。這三個菱形十二面體的星狀多面體的相互關係將被整理在第六個章節。

    在Cabri 3D下,這份論文將呈現菱形十二面體的星狀多面體的構造以及在動態幾何軟體下的相互關係,總共分為七個章節。任何人都可以清楚的瀏覽這個網站看出細節:
    http://oz.nthu.edu.tw/~g943214/Geometry/Geometry.htm
    在這裡任何人都可以看到菱形十二面體的星狀多面體和3D動態幾何軟體應用的關係。


    Abstract

    There are three stellations of rhombic dodecahedron. The first stellation of rhombic dodecahedron is Escher's solid.The second stellation of rhombic dodecahedron is constructed by Escher's solid. The third stellation of rhombic dodecahedron is constructed by the second stellation of rhombic dodecahedron. The convex of Escher's solid is cuboctahedron. The convex of the third stellation of rhombic dodecahedron is truncated octahedron. The relations of the stellations of rhombic dodecahedron are arranged in sixth section.

    The paper presents the constitution of the stellations of rhombic dodecahedron under Cabri 3D Geometry, interactive dynamic software of geometry. It is divided into seven sections. Anyone could browse clearly to discover the detail in the wedsite:
    http://oz.nthu.edu.tw/~g943214/Geometry/Geometry.htm
    Here anyone could see the relations of the stellations of rhombic dodecahedron and the application of 3D dynamic geometry.

    June 2007

    Contents Page Abstract ........................1 Preface.........................2 Section 1 : Preliminaries to the stellation.......4 Section 2 : The stellations of regular polyhedron....5 Section 3 : Archimedean Solid .............38 Section 4 : Rhombic dodecahedron............41 Section 5 : The stellations of rhombic dodecahedron ..44 Section 6 : Summary ..................57 Section 7 : Reference .................60

    Reference

    Wells, D. The Penguin Dictionary of Curious and Interesting Geometry

    The Mathematical Gazette,Vol.41,No.337.[Oct.,1957],pp.189-194.

    Brill, D. "Double Star Flexicube." Brilliant Origami: A Collection of Original Designs. Tokyo: Japan Pub., pp. 98-103, 996.

    Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 215-216, 1991.

    Cundy, H. and Rollett, A. "The Stellated Rhombic Dodecahedron." §3.9.5 in Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 127-128, 1989.

    Wenninger, M. J. Dual Models. Cambridge, England: Cambridge University Press, p. 36, 1983.

    Jstor http://link.jstor.org/sici?sici=0025-5572%28195710%292%3A41%3A337%3C189%3ASOTRD%3E2.0.CO%3B2-D

    http://140.114.32.1/~jcchuan/

    http://en.wikipedia.org/wiki/Stellation

    http://www.johnrausch.com/PuzzleWorld/toc.asp?t=_cat/il201.htm%23second_stellation&m=puz/second_stellation.htm

    http://www.johnrausch.com/puzzleWorld/puz/seven_piece_third_stellation.htm

    http://mathworld.wolfram.com/Stellation.html

    http://mathworld.wolfram.com/RhombicDodecahedronStellations.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE