簡易檢索 / 詳目顯示

研究生: 張簡俊佑
Chang Chien, Chun Yu
論文名稱: 優化二硫化鐵初合成奈米顆粒暨超薄膜硫化參數研究
An optimization process study of FeS2 pyrite nanocrystals and sulfuration parameters effects on ultrathin films
指導教授: 周麗新
Lih-Hsin Chou
口試委員: 闕郁倫
蕭肅競
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 硫化亞鐵太陽能電池奈米顆粒成長機制
外文關鍵詞: pyrite, solar cell, nanoparticles, growth mechanism
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FeS2 (Pyrite)為一個極有潛力的太陽能電池吸收層材料,因其高吸收係數(α>105 cm−1)、適當的能隙(約0.95 eV)、地球含量豐富、無毒性組成元素等特性,以理論計算僅須極薄的厚度即可使用,然而因其純相晶體難被合成,目前的應用仍然有限。
    本論文第一部分藉由化學法合成pyrite奈米顆粒,透過合成時間的改變,加以探討pyrite合成機制,並提出適用於各階段晶粒成長的模型,同時也發現高溫合成一段時間再將溶液(含顆粒)靜置於室溫中,已合成的奈米粉末晶粒仍會繼續成長,由於長時間高溫合成會因熱力平衡造成晶粒圓化,因此適當調整高溫合成及室溫靜置時間將得以維持良好方正形貌,此外還可節省製程所需能源。
    第二部分探討薄膜硫化熱處理時硫量的影響。過去使用飽和蒸氣壓的硫量造成薄膜硫鐵比大於2,因此藉由硫量的減少降低FeS2 (pyrite)薄膜硫鐵比,並分析各種硫量熱處理薄膜試片,透過掃描式電子顯微鏡搭載的能量散佈分析儀(SEM-EDS)分析薄膜粉末硫鐵比,低略角X-ray繞射(GIXRD)以及穿透式電子顯微鏡(TEM)分析薄膜微結構,原子力顯微術(AFM)量測薄膜厚度,再透過霍爾量測及紫外-可見光光譜儀(UV-VIS)分析pyrite薄膜電學及光學性質。


    FeS2 (Pyrite) is one of the most promising materials for solar cell absorber because of its high absorption coefficient (α> 105 cm-1), proper energy gap (about 0.95 eV), abundant earth elements, and non-toxic elements. But it’s difficult to synthesize pure phase crystal that limit current applications.
    In the first part of this thesis, pyrite nanoparticles were chemically synthesized. The mechanism of pyrite synthesis was investigated through the change of synthesis time. The crystal grains growth model was proposed for different stages. It was observed that the synthesized nano crystal grains kept growing after the high temperature solution-synthesized (containing the crystal grains) was left to stand at room temperature. As prolonged high temperature synthesis will lead to rounded grains due to thermal equilibrium, proper adjusting the time spent at high temperature and room temperature may maintain the cubic morphology of grains. Addtionlly, energy can be saved.
    In the second part, the influence of the amount of sulfur used during heat treatment was studied. In the past, the sulfur amount used generated saturated vapor pressure led to a sulfur/iron content ratio more than 2. FeS2 (pyrite) films with lower sulfur/iron content ratio were achieved by using reduced sulfur amount. The thin film samples annealed with different sulfur amounts were analyzed by energy dispersive spectrometer (SEM-EDS) for sulfur/iron content ratio of scraped thin film powders, grazing angle X-ray diffraction (GIXRD) and transmission electron microscopy (TEM) for the thin film microstructure, atomic force microscopy (AFM) for the thin film thickness, as well as hall measurement and UV/VIS spectophotometer for the electrical and optical properties, respectively

    目錄 第一章 前言 .............................................1 第二章 文獻回顧..........................................3 2-1 太陽能電池原理.....................................3 2-2 FeS2(pyrite)相關特性介紹及研究背景.................5 2-3 FeS2 (pyrite) 薄膜製程背景.........................10 2-3-1 物理法........................................10 2-3-2 化學法........................................11 2-3-3 solution based 法.............................14 2-4 FeS2 (pyrite) 元件文獻及製程背景...................15 2-5 研究動機..........................................19 第三章 實驗方法與步驟...................................23 3-1 實驗流程..........................................23 3-1-1 FeS2(Pyrite) 初合成實驗........................23 3-1-2 珠磨實驗.......................................23 3-1-3 薄膜製作及硫化熱處理...........................24 3-2 使用藥品..........................................26 3-3 純Pyrite 合成步驟.................................27 3-4 珠磨法............................................28 3-5 薄膜製作及硫化熱處理實驗流程.....................29 3-6 使用儀器介紹.....................................30 3-6-1 珠磨機........................................30 3-6-2 粒徑分析儀....................................30 3-6-3 旋轉塗佈機....................................30 3-6-4 X-Ray 繞射分析儀..............................31 3-6-5 掃描式電子顯微鏡..............................31 3-6-6 紫外-可見光光譜儀.............................32 3-6-7 霍爾量測系統..................................32 3-6-8 原子力顯微鏡..................................32 3-7 各分析試片製備方法...............................33 3-7-1 素玻璃/矽基板清洗.............................33 3-7-2 XRD試片製備..................................33 3-7-3 SEM試片製備..................................34 3-7-4 Hall measurement 試片製備 .....................34 3-7-5 UV-Vis 試片製備..............................35 3-7-6 AFM 試片製備................................35 3-7-7 硫氛圍熱處理之試片製備 ......................35 3-7-8 動態光散射粒徑分析(DLS)的樣品製備............36 第四章 結果與討論.....................................37 4.1 FeS2 (pyrite)初合成晶粒分析........................38 4.1.1 FeS2 (pyrite)初合成XRD分析.....................38 4.1.2 FeS2 (pyrite)初合成EDS分析.....................45 4.1.3 FeS2 (pyrite)初合成SEM分析.....................47 4.1.3.1 高溫合成粉末SEM圖.......................47 4.1.3.2 室溫靜置粉末SEM圖.......................49 4.1.2 FeS2 (pyrite)初合成晶粒成核及成長機制討論.......51 4.1.2.1 高溫化學合成成長機制討論.................51 4.1.2.2 室溫化學合成成長機制討論.................61 4.2 硫化熱處理硫量控制參數分析.......................64 4.2.1 硫化熱處理硫量控制參數EDS分析................65 4.2.2 硫化熱處理硫量對薄膜微結構影響-TTRXRD分析...66 4.2.3 硫化熱處理硫量對薄膜微結構影響-TEM分析.......68 4.2.4 硫化熱處理硫量對電性的影響分析. ..............70 4.2.5硫化熱處理硫量對薄膜光學性質影響-UV-Vis分析...71 4.2.6 硫化熱處理硫量對薄膜厚度影響-AFM分析........74 4.2.7 薄膜粒子計算與硫鐵比討論......................77 第五章 結論...........................................79 圖目錄 圖 2.1 太陽能電池原理機制圖...............................5 圖 2.2 Fe-S 二元相圖......................................7 圖 2.3 不同太陽能電池吸收層材料使用厚度圖.................8 圖 2.4 常見元素價位表.....................................8 圖 2.5 pyrite 晶體結構圖..................................9 圖 2.6 各堆疊結構示意圖及其I-V 圖........................18 圖 3.1 實驗步驟簡易流程示意圖............................25 圖 3.2 pyrite實驗的實驗流程及分析目的示意圖..............26 圖 4.1 FeS2(pyrite)化學合成時間小於等於一小時之合成粉末XRD 圖.................................................40 圖 4.2 FeS2 (pyrite)化學合成時間大於等於一小時之合成粉末XRD 圖 (1,3,5小時) ....................................40 圖 4.3 FeS2 (pyrite)各化學合成時間XRD峰值強度圖..........41 圖 4.4 FeS2(pyrite)高溫化學合成搭配室溫成長XRD圖........43 圖4.5 高溫化學合成FeS2(pyrite)各合成時間SEM圖..........48 圖4.6 高溫合成FeS2 (pyrite)搭配低溫成長各合成時間SEM圖.................................................50 圖4.7 兩階段製程FeS2 (pyrite)奈米晶形成機制圖............52 圖4.8 FeS2化學晶粒合成俯視圖、硫濃度-位置示意圖及位能圖..59 圖4.9高溫化學合成粉末及室溫靜置粉末雜相比較圖...........61 圖4.10 FeS2化學晶粒合成俯視圖以及硫濃度-位置示意圖(室溫靜置)................................................63 圖4.11 pyrite薄膜熱處理前與標準硫、減量硫熱處理後之TTRXRD分析圖...................................................68 圖4.12 倍減量硫熱處理的薄膜 HRTEM 明視野像圖..........69 圖4.13 pyrite薄膜於不同硫量進行硫化熱處理吸收係數-波長圖 (400~1500 nm)............................................73 圖4.14 pyrite薄膜於不同硫量進行硫化熱處理電性分析圖,(h1/2對入射能h作圖) ...........................................73 圖4.15 pyrite薄膜標準硫量、減量硫及無硫熱處理之AFM分析圖 (a) 薄膜熱處理前 (b) 標準硫 (c) 1/20 倍減量硫 (d) 1/32 倍減量硫 (e) 無硫熱處理......................................75 圖4.16 pyrite薄膜經不同硫量熱處理厚度曲線圖.............76 圖4.17兩階段製程薄膜500℃,1小時熱處理的TEM頂視圖......77 表目錄 表2.1 過去與目前所採用之Pyrite合成法比較..............20 表2.2 過去與目前所採用之Pyrite合成法之電性比較........20 表4.1 實驗使用參數.....................................38 表4.2 高溫化學合成粉末與室溫靜置粉末雜相觀察整理表.....44 表4.3 高溫化學合成粉末與室溫靜置粉末EDS表.............46 表4.4硫化熱處理硫量控制EDS分析 (500 °C)..............65 表4.5硫化熱處理硫量對相關電性影響.....................70

    [1] M. S. Lin, 太陽電池技術入門 (Chuan-Hua, Taipei, 2008), p.3
    [2] W. G. Adams, R. E. Day, Phil. Trans. R. Soc. Lond. 167, 313 (1877)
    [3] S.O. Kasap, Optoelectronics and Photonics Principles and Practics (Pearson, New Jersey , 2001) vol. 6, p.291
    [4] O. Kubaschewski, Iron Binary Phase Diagrams (Spring , Berlin, 1982), p. 125
    [5] F. Gronvold, E. F. Westrum.Tth, J. Chem. Thermodyn. 8, 1039 (1976)
    [6] A. Ennaoui, S. Fiechter, H. Goslowsky, H. Tributsch, J.Electrochem. Soc. 132, 1579 (1985)
    [7] A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner,H. Tributsch, Sol. Energy Mater. Sol. Cells 29, 289 (1993)
    [8] F. Alharbi, J. D. Bass, A. Salhi, A. Alyamani, H. C. Kim, R. D. Miller, Renewable Energy, 36, 2753 (2011)
    [9] S. Seefeld, M. Limpinsel, Y. Liu, N. Farhi, A. Weber, Y. Zhang, N. Berry, Y. J. Kwon, C. L. Perkins, J. C. Hemminger, R. Wu, M. Law, J. Am. Chem. Soc. 135, 4412 (1992)
    [10] S. C. Hsiao, Ph.D. thesis, National Tsing Hua University, 2016
    [11] M. Birkholz, D. Lichtenberger, C. Hopfner, and S. Fiechter, Sol. Energy Mater. Sol. Cells 27, 243 (1992)
    [12] R. J. Soukup, P. Prabukanthan, N. J. Ianno, A. Sarkar, C. A. Kamler, and D. G. Sekora, J. Vac. Sci. Technol. A 29, 011001 (2012)
    [13] H. Liu, D. Chi, J. Vac. Sci. Technol. A 30, 04D102 (2012)
    [14] S. Seehre, P. A. Montan, M. S. Seehre, and S. Ksen, J. Mater. Sci. 14, 2761 (1979)
    [15] M. Vahidi, S. W. Lehner, P. R. Buseck, N. Newman, Acta Mater. 61, 7392 (2013)
    [16] G. Smestad, A. Da Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Meziani, M. Birkholz, Sol. Eng Mat. 18, 299 (1989)
    [17] R. Sun, M. K. Y. Chan, G. Ceder, Phys. Rev. B 83, 235311(2011)
    [18] B. Thomas, K. Ellmer, M. Muller, C. Hopfner, S. Fiechter, H. Tributsch, J. Cryst. Growth 170, 808 (1997)
    [19] S. Kment, H. Kmentova, A. Sarkar, Soukup, J. Rodney, Ianno, J. Natale , J. Krysa, Z. Hubicka, J. Olejnicek, C. L. Exstrom and S. A. Darveau, in proceedings of the IEEE, Seattle, 2011,( University of Nebraska-Lincoln, Lincoln), p.001287
    [20] A. Ennaoui, H. Tributsch, Sol. Cells, 13, 197 (1984)
    [21] A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner and H. Tributsch, Sol. Energy Mater. Sol. Cells, 29, 289 (1993)
    [22] B. Mao, Q. Donga, C. L. Exstrom, J. Huang, Thin Solid Films, 562, 361 (2014)
    [23] J. Hu, Y. Zhang, M.Law, R.Wu, Phys. Rev. B 85, 085203 (2012)
    [24] R. Sun, M. K. Y. Chan, G. Ceder, Phys. Rev. B 83, 235311 (2012)
    [25] L. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran , B. Pelatt , E. Altschul , H. A. S. Platt , J. F. Wager , D. A. Keszler , A. Zunger, Adv. Energy Mater. 1, 748 (2011)
    [26] S. Kawai , R. Yamazaki , S. Sobue , E. Okuno , M. Ichimura, APL MATER. 2, 032110 (2014)
    [27] C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris, B. A. Korgel, J. Phys. Chem. Lett. 3, 2352 (2012)
    [28] S. H. Chiu, M.S. thesis, National Tsing Hua University, 2014
    [29] T. Y. Lin, M.S. thesis, National Tsing Hua University, 2016
    R. Henríquez, C. Vasquez, N. Briones, E. Muñoz, P. Leyton, E.A. Dalchiele, Int. J. Electrochem. Sci. 11, 4966 (2016)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE