研究生: |
張簡俊佑 Chang Chien, Chun Yu |
---|---|
論文名稱: |
優化二硫化鐵初合成奈米顆粒暨超薄膜硫化參數研究 An optimization process study of FeS2 pyrite nanocrystals and sulfuration parameters effects on ultrathin films |
指導教授: |
周麗新
Lih-Hsin Chou |
口試委員: |
闕郁倫
蕭肅競 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 硫化亞鐵 、太陽能電池 、奈米顆粒 、成長機制 |
外文關鍵詞: | pyrite, solar cell, nanoparticles, growth mechanism |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FeS2 (Pyrite)為一個極有潛力的太陽能電池吸收層材料,因其高吸收係數(α>105 cm−1)、適當的能隙(約0.95 eV)、地球含量豐富、無毒性組成元素等特性,以理論計算僅須極薄的厚度即可使用,然而因其純相晶體難被合成,目前的應用仍然有限。
本論文第一部分藉由化學法合成pyrite奈米顆粒,透過合成時間的改變,加以探討pyrite合成機制,並提出適用於各階段晶粒成長的模型,同時也發現高溫合成一段時間再將溶液(含顆粒)靜置於室溫中,已合成的奈米粉末晶粒仍會繼續成長,由於長時間高溫合成會因熱力平衡造成晶粒圓化,因此適當調整高溫合成及室溫靜置時間將得以維持良好方正形貌,此外還可節省製程所需能源。
第二部分探討薄膜硫化熱處理時硫量的影響。過去使用飽和蒸氣壓的硫量造成薄膜硫鐵比大於2,因此藉由硫量的減少降低FeS2 (pyrite)薄膜硫鐵比,並分析各種硫量熱處理薄膜試片,透過掃描式電子顯微鏡搭載的能量散佈分析儀(SEM-EDS)分析薄膜粉末硫鐵比,低略角X-ray繞射(GIXRD)以及穿透式電子顯微鏡(TEM)分析薄膜微結構,原子力顯微術(AFM)量測薄膜厚度,再透過霍爾量測及紫外-可見光光譜儀(UV-VIS)分析pyrite薄膜電學及光學性質。
FeS2 (Pyrite) is one of the most promising materials for solar cell absorber because of its high absorption coefficient (α> 105 cm-1), proper energy gap (about 0.95 eV), abundant earth elements, and non-toxic elements. But it’s difficult to synthesize pure phase crystal that limit current applications.
In the first part of this thesis, pyrite nanoparticles were chemically synthesized. The mechanism of pyrite synthesis was investigated through the change of synthesis time. The crystal grains growth model was proposed for different stages. It was observed that the synthesized nano crystal grains kept growing after the high temperature solution-synthesized (containing the crystal grains) was left to stand at room temperature. As prolonged high temperature synthesis will lead to rounded grains due to thermal equilibrium, proper adjusting the time spent at high temperature and room temperature may maintain the cubic morphology of grains. Addtionlly, energy can be saved.
In the second part, the influence of the amount of sulfur used during heat treatment was studied. In the past, the sulfur amount used generated saturated vapor pressure led to a sulfur/iron content ratio more than 2. FeS2 (pyrite) films with lower sulfur/iron content ratio were achieved by using reduced sulfur amount. The thin film samples annealed with different sulfur amounts were analyzed by energy dispersive spectrometer (SEM-EDS) for sulfur/iron content ratio of scraped thin film powders, grazing angle X-ray diffraction (GIXRD) and transmission electron microscopy (TEM) for the thin film microstructure, atomic force microscopy (AFM) for the thin film thickness, as well as hall measurement and UV/VIS spectophotometer for the electrical and optical properties, respectively
[1] M. S. Lin, 太陽電池技術入門 (Chuan-Hua, Taipei, 2008), p.3
[2] W. G. Adams, R. E. Day, Phil. Trans. R. Soc. Lond. 167, 313 (1877)
[3] S.O. Kasap, Optoelectronics and Photonics Principles and Practics (Pearson, New Jersey , 2001) vol. 6, p.291
[4] O. Kubaschewski, Iron Binary Phase Diagrams (Spring , Berlin, 1982), p. 125
[5] F. Gronvold, E. F. Westrum.Tth, J. Chem. Thermodyn. 8, 1039 (1976)
[6] A. Ennaoui, S. Fiechter, H. Goslowsky, H. Tributsch, J.Electrochem. Soc. 132, 1579 (1985)
[7] A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner,H. Tributsch, Sol. Energy Mater. Sol. Cells 29, 289 (1993)
[8] F. Alharbi, J. D. Bass, A. Salhi, A. Alyamani, H. C. Kim, R. D. Miller, Renewable Energy, 36, 2753 (2011)
[9] S. Seefeld, M. Limpinsel, Y. Liu, N. Farhi, A. Weber, Y. Zhang, N. Berry, Y. J. Kwon, C. L. Perkins, J. C. Hemminger, R. Wu, M. Law, J. Am. Chem. Soc. 135, 4412 (1992)
[10] S. C. Hsiao, Ph.D. thesis, National Tsing Hua University, 2016
[11] M. Birkholz, D. Lichtenberger, C. Hopfner, and S. Fiechter, Sol. Energy Mater. Sol. Cells 27, 243 (1992)
[12] R. J. Soukup, P. Prabukanthan, N. J. Ianno, A. Sarkar, C. A. Kamler, and D. G. Sekora, J. Vac. Sci. Technol. A 29, 011001 (2012)
[13] H. Liu, D. Chi, J. Vac. Sci. Technol. A 30, 04D102 (2012)
[14] S. Seehre, P. A. Montan, M. S. Seehre, and S. Ksen, J. Mater. Sci. 14, 2761 (1979)
[15] M. Vahidi, S. W. Lehner, P. R. Buseck, N. Newman, Acta Mater. 61, 7392 (2013)
[16] G. Smestad, A. Da Silva, H. Tributsch, S. Fiechter, M. Kunst, N. Meziani, M. Birkholz, Sol. Eng Mat. 18, 299 (1989)
[17] R. Sun, M. K. Y. Chan, G. Ceder, Phys. Rev. B 83, 235311(2011)
[18] B. Thomas, K. Ellmer, M. Muller, C. Hopfner, S. Fiechter, H. Tributsch, J. Cryst. Growth 170, 808 (1997)
[19] S. Kment, H. Kmentova, A. Sarkar, Soukup, J. Rodney, Ianno, J. Natale , J. Krysa, Z. Hubicka, J. Olejnicek, C. L. Exstrom and S. A. Darveau, in proceedings of the IEEE, Seattle, 2011,( University of Nebraska-Lincoln, Lincoln), p.001287
[20] A. Ennaoui, H. Tributsch, Sol. Cells, 13, 197 (1984)
[21] A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner and H. Tributsch, Sol. Energy Mater. Sol. Cells, 29, 289 (1993)
[22] B. Mao, Q. Donga, C. L. Exstrom, J. Huang, Thin Solid Films, 562, 361 (2014)
[23] J. Hu, Y. Zhang, M.Law, R.Wu, Phys. Rev. B 85, 085203 (2012)
[24] R. Sun, M. K. Y. Chan, G. Ceder, Phys. Rev. B 83, 235311 (2012)
[25] L. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran , B. Pelatt , E. Altschul , H. A. S. Platt , J. F. Wager , D. A. Keszler , A. Zunger, Adv. Energy Mater. 1, 748 (2011)
[26] S. Kawai , R. Yamazaki , S. Sobue , E. Okuno , M. Ichimura, APL MATER. 2, 032110 (2014)
[27] C. Steinhagen, T. B. Harvey, C. J. Stolle, J. Harris, B. A. Korgel, J. Phys. Chem. Lett. 3, 2352 (2012)
[28] S. H. Chiu, M.S. thesis, National Tsing Hua University, 2014
[29] T. Y. Lin, M.S. thesis, National Tsing Hua University, 2016
R. Henríquez, C. Vasquez, N. Briones, E. Muñoz, P. Leyton, E.A. Dalchiele, Int. J. Electrochem. Sci. 11, 4966 (2016)