研究生: |
莊孟霏 CHUANG, MENG-FEI |
---|---|
論文名稱: |
秘書問題與其新型推廣 The Secretary Problem and Its New Variation |
指導教授: |
胡殿中
HU, TIEN-CHUNG |
口試委員: |
趙一峰
呂理裕 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 秘書問題 |
外文關鍵詞: | The Secretary Problem |
相關次數: | 點閱:28 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文第二章介紹了四個版本的秘書問題,並且在第三章作變化,研究新型的秘書問題。
在原始版本的秘書問題情境下,增設了錄取門檻-及格分數的限制,未達及格分數者,不予以錄取。已知不及格人數共有𝑡位,我們目標是最大化選中實際第一名的機率。
In Chapter 2, we introduce four versions of the secretary problem, and make its new variation in Chapter 3.
We add the “threshold value” (or “passing score”) into the situation of the standard secretary problem, and the one whose scores are below this value would not be admitted. Given t, the total number of people who fail, we hope to find the maximum probability of selecting the best person.
[1] Chow, Y. S., Moriguti, S., Robbins, H. & Samuels, S. M. (1964). Optimal selection
based on relative rank (the “secretary problem”). Isared J. Math. 2, 81-90.
[2] Chow, Y. S., Robbins, H. & Siegmund, D. (1971). Great expectations: The theory
of optimal stopping. Houghton Mifflin Company, Boston.
[3] Ferguson, T. S. (1989). Who solved the secretary problem?. Statistical Science, Vol.
4, No. 3, 282-296.
[4] Freeman, P. R. (1983). The secretary problem and its extensions: A review.
International Statistical Review 51,189-206.
[5] Gilbert, J. & Mosteller, F. (1966). Recognizing the maximum of a sequence. J. Am.
Statist. Assoc. 61, 35-73.
[6] Haigh, J. & Roters, M. (2000). Optimal strategy in a dice game. J. Applied
Probability 37, 1110–1116.
[7] Hsiau, Shoou-Ren & Yang, Jiing-Ru (2000). A natural variation of the standard
secretary problem. Statistica Sinica 10, 639-646.
[8] Kane, S.P. (2012). A new dimension to the secretary problem. 2nd Annual
International Conference on Operations Research and Statistics, 9-11.
[9] Lindley, D. V. (1961). Dynamic programming and decision theory. Applied
Statistics 10, 39-51.
[10] Neller, Todd W. (2004). Solving the dice game Pig: An introduction to dynamic
programming and value iteration.
http://cs.gettysburg.edu/~tneller/nsf/pig/index.html.
[11] Neller, Todd W., & Presser, Clifton G.M. (2004). Optimal play of the dice game
Pig. The UMAP Journal 25(1), 25–47.
[12] Neller, Todd W., & Presser, Clifton G.M. (2005). Pigtail: A pig addendum. The
UMAP Journal 26(4), 443–458.
[13] Neller, Todd W., & Presser, Clifton G.M. (2010). Practical play of the dice game
Pig. The UMAP Journal 31(1), 5-20.
[14] Tijms, Henk (2012). Stochastic games and dynamic programming. Asia Pacific
Mathematics Newsletter, Vol. 2, No. 3, 6-10.
[15] 李宗元 (1978). 海外學人相親記. 數學傳播第二卷第三期, 54-61.