簡易檢索 / 詳目顯示

研究生: 郭子凡
Kuo, Tzu-Fan
論文名稱: 仿生彈性鰭及血鸚鵡魚推進原理之分析
The Propulsion Principle of Biomimetic Deformable Fins and Blood Parrot Cichlid
指導教授: 楊鏡堂
Yang, Jing-Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 尾鰭運動可變形鰭
外文關鍵詞: motion of caudal fin, deformable fin
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探究血鸚鵡魚尾鰭運動之高效率推進模態與機制,研究重點是以尾鰭所產生之流場結構、推進力量與能量效率作為研究主軸,並探討人造可變形鰭及非可變形鰭之流體力學參數差異,希望擷取高度可變形鰭在運動與效能上之長處,加上與真實魚鰭流場之動力相似理論分析比較,歸納出能與真實魚鰭性能相匹配之最佳參數。實驗分析分為血鸚鵡尾鰭及人造仿生魚鰭兩部份。人造及真實魚鰭皆以高速攝影機記錄其流場結構,採用粒子影像測速儀及立體粒子影像測速儀(stereoscopic digital particle image velocimetry, SDPIV) 做定量之分析。並比較血鸚鵡尾鰭與高性能人造魚鰭的流場拓樸結構差異。血鸚鵡尾鰭流場定性觀測顯示垂直尾鰭波浪模態可分為三種不同的運動模態,(1)前進下沉;(2)前進上浮; (3)停滯。PIV流場的量測顯示尾鰭波浪擺動推進前進下沉時,尾鰭上緣及下緣各產生一渦流環,且上緣渦流環中心噴流力量大於下緣渦流環。從粒子影像測速儀量測及流場觀察中發現,硬板之速度向量場較軟板混亂且無明顯特徵流場。結果顯示軟鰭在高效率能在不同的頻率擺動下都能保持;當材料為PET,當形狀為矩形,展弦比為1時,史卓荷數(Strouhal number)可得與生物最佳推進參數接近的0.38;血鸚鵡尾鰭的拓樸流場結構與最佳性能參數人工魚鰭的拓樸結構比較結果中顯示,兩者有很大的相似性。這些結果顯示高度可變形之鰭片有接近於真實尾鰭對於推進力量與效能的極大優勢。


    The objective of this study is to investigate how can blood parrot cichlid perform highly efficient and maneuverable swimming locomotion in the water and to design a biomimetic fin which is consistent with the dynamic performance of the caudal fin of blood parrot cichlid. The comparison of propulsive performance between deformable and rigid fins is a main part of this study. Besides, the experiments are carried out using both living fish and artificial mechanism mimicking fish tai and a new experimental technique, stereoscopic digital particle image velocimetry (SDPIV), is manipulated to do quantitative analysis. At last we compare the topology flow structure between caudal fin of blood parrot cichlid and the best performance artificial fin. The qualitative flow visualization of caudal fin shows that there are three locomotion types of caudal fin maneuvering. (1) pure forward swimming and forward-sinking, (2) pure forward swimming and forward-rising, (3) position holding. The flow field measurement by using PIV shows that vortex pairs were generated by both the dorsal and ventral parts of the caudal fin and the central jet force of the upper vortex ring is larger than that of the lower one during forward-sinking. The flow field of PET fin is more stable and its flow topology is simpler. PET fin can produce larger propulsive force than PVC fin and PET fin maintains its high propulsion efficiency at different oscillation frequency, while the PVC fin can not. PET fin (rectangle, AR=1) has the best performance in propulsion force, efficiency;its flow field has the similarity with flow field induced by the caudal fin. The topological flow field structure induced by blood parrot’s caudal fin and the best performance artificial fin have many similarities. The experimental results show that highly deformable fin have advantages in maneuverability and efficiency.

    摘 要 i Abstract ii 誌謝 iii 目 錄 iv 圖表目錄 vii 符號說明 xv 第一章 前言 1 第二章 文獻回顧與分析 4 2-1 被動流控制 5 2-1.1 魚的形態與結構 5 2-1.2 動物皮膚表面邊界層 6 2-1.3 座頭鯨的鰭之節瘤 7 2-1.4 旗子於流體中之擺動 9 2-2 主動流控制 10 2-2.1 魚類之運動模式 10 2-2.2 渦度的產生及跡流之結構 12 2-2.3 實驗量測與分析之方法 16 2-3 現有仿生機械研發概況 18 第三章 研究方法 20 3-1 實驗設備系統概觀 21 3-2 實驗設備 21 3-2.1 雷射系統 21 3-2.2 高速攝影機 22 3-2.3 平凹柱狀透鏡鏡組 23 3-2.4 水槽以及來回上下擺動機構 23 3-2.5 實驗魚種 24 3-3流場觀測 25 3-4 流場速度量測 26 3-4.1 粒子影像測速儀基本原理 28 3-4.2 立體粒子影像測速儀原理 30 3-4.2.1 旋轉系統(rotation system)立體粒子影像測速儀 30 3-4.2.2 二維校正式之圖像重建 31 3-4.2.3 三維速度重建 33 3-5 無因次分析 34 3-6 實驗方法 37 3-7 拓樸學(topology)與流場判別之基本概念 40 3-8仿魚鰭機構設計 43 第四章 結果與討論 44 4-1 實體魚尾鰭推進機制分析 45 4-1.1 尾鰭推進行為模態觀察 45 4-1.2 尾鰭推進PIV流場計算 46 4-2 仿生人工魚鰭推進分析 54 4-2.1 人工魚鰭實驗參數之選定 54 4-2.2 人工魚鰭擺動之模態 54 4-2.3 鰭片之參數對流場之影響 68 4-2.4 人工魚鰭推進速度及效率之評估 70 4-2.5 人工魚鰭流場PIV 速度向量場計算 79 4-2.5.1 硬板人工魚鰭PIV 速度向量場計算 79 4-2.5.2 軟板人工魚鰭PIV 速度向量場計算 96 4-3 拓樸流場分析 112 4-3.1 尾鰭與仿生魚鰭推進流場拓樸分析比較 112 第五章 結論與未來展望 117 5-1 結論 117 5-2 未來展望 120 第六章 參考文獻 121

    Askew, G. N. and Marsh, R. L., 1997, “The effects of length trajectory on the mechanical power output of mouse skeletal muscles,” Journal of Experimental. Biology, Vol. 200, pp. 3119-3131.

    Bearman, P. W., Owen, J. C., 1998, “Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines,” Journal of Fluid Structural, Vol. 12, pp. 123-130.

    Breder C. M., 1926, “The locomotion of fishes,” Zoologica, Vol. 4, pp.159-256.

    Bushnell, D. M. and Moore, K. J., 1991, “Drag reduction in nature,” Annual Review of fluid mechanics, Vol. 23, pp. 65-79.

    Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., and Lehman, S., 2000, “How animals move : an integrative view,” Science, Vol. 288, pp. 100-106.

    Drucker, E. G. and Lauder, G. V., 1999, “Locomotor forces on a swimming fish: three dimensional vortex wake dynamics quantified using digital particle image velocimetry,” Journal of Experimental Biology, Vol. 202, pp. 2393-2412.

    Drucker, E. G. and Lauder, G. V., 2000, “A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers,” Journal of Experimental Biology, Vol. 203, pp. 2379-2393.

    Fish, F. E. and Battle, J. M., 1995, “Hydrodynamic design of the humpback whale flipper,” Journal of Morphology, Vol. 225, pp. 51-60.

    Fish, F. E., and Rohr, J., 1999, “Review of dolphin hydrodynamics and swimming performance,” Space And Naval Warfare System Center, Tech. Rep. 1801.

    Gray, J., 1936, “ Studies in animal locomotion VI. The propulsive powers of the dolphin,” Journal of Experimental Biology, Vol. 13, pp. 192-199.

    Hanke, W., Brucker, C., and Bleckmann, H., 2000, “The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection,” Journal of Experimental Biology, Vol. 203, pp. 1193-1200.

    Hedrick, T. L., Tobalske, B. W., and Biewener, A. A., 2002, “Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels and ringed turtle-doves,” Journal of Experimental Biology, Vol. 205, pp. 1389-1409.

    Hirata, K., 2000, http://www.nmri.go.jp/eng/khirata/fish, National Maritime Research Institute.

    Hu,2005,http://privatewww.essex.ac.uk/~jliua/picgallery.htm, Department of Computer Science University of Essex , United Kingdom.

    Jakobsen, M. L., Dewhirst, T. P., and Greated, C. A., 1997, “Particle image velocimetry for predictions of acceleration fields and force within fluid flows,” Measurement Science Technology, Vol. 8, pp. 1502-1516.

    Laramee, R. S., Hauser, H., Doleisch, H., Post, Fr. H., Vrolijk, B., and Weiskopf D., 2004, “The state of the art in flow visualization: dense and texture-based techniques,” Computer Graphics Forum, Vol. 23, pp. 203-221.

    Lauder, G. V. and Drucker, E. G., 2002, “Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion,” News Physiol Science, Vol. 17, pp. 235-240

    Lauder, G. V., Nauen, J. C., and Drucker, E. G., 2002, “Experimental hydrodynamics and evolution: function of median fins in ray-finned fishes,” Integrative and Comparative Biology, Vol. 42, pp. 1009-1017.

    Lindsey, C. C., 1978, “Form, function and locomotory habits in fish,” Fish Physiology, Vol. VII Locomotion, W. S. Hoar and D. J. Randall, Eds. New York: Academic, pp. 1-100.

    Miklosovic, D. S., Murray, M. M., Howle, L. E., and Fish. F. E., 2004. “Leading edge tubercles delay stall on humpback whale(Megaptera novaeangliae) flippers,” Physics of Fluids, Vol. 16, pp. 39-42.

    Mittal, R., Dong, H., Bozkurttas, M., Lauder, G. V., and Madden, P., 2006, “Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish,” Bioinspiration and Biomimetics, Vol. 1, pp. S35–S41.

    .Nauen, J. C. and Lauder, G. V., 2002, “Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicas,” Journal of Experimental Biology, Vol. 205, pp. 1709-1724.

    Nauen, J. C. and Lauder, G. V., 2002, “Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry,” Journal of Experimental Biology, Vol. 205, pp. 3271-79.

    Owen, J. C., Szewezyk, A. A., and Bearman, P. W., 2000. “Suppression of Karman vortex shedding, Gallery of Fluid Motion,” Physics of Fluids, Vol. 12, pp. 1-13.

    Prasad A. K., 2000, “Stereoscopic particle image velocimetry,” Experimental of Fluids, Vol. 29, pp. 103-116.

    Prasad, A. K. and Jensen, K., 1995, “Scheimpflug stereocamera for particle image velocimetry in liquid flows,” Application of Optics, Vol. 34, pp. 7092-7099.

    Raffel, M., Willert, C., and Kompenhans, J., 1998, “Particle Image Velocimetry: A Practical Guide,” New York: Springer.

    Rayner, J. M. V., 1991, “On aerodynamics and the energetics of vertebrate flapping flight,” Contemporary Mathematics, Vol. 141, pp. 351-400,.

    Rohr, J., Latz, M. I., Fallon, S., Nauen, J.C., and Hendricks, E., 1998, “Experimental approaches towards interpreting dolphin-stimulated bioluminescence,” Journal of Experimental Biology, Vol. 201, pp. 1447-1460.

    Sakakibara, J., Nakagawa, M., and Yoshida, M., 2004, “Stereo-PIV study of flow around a maneuvering fish,” Experimental of Fluids, Vol. 36, pp. 282-293.

    Sfakiotakis, M., Lane, D. M., Bruce, J., and Davies, C., 1999, “Review of fish swimming modes for aquatic locomotion,” IEEE Journal of Oceanic Engineering , Vol. 24, pp. 237-252.

    Shelley, M., Vandenberghe, N., and Zhang, J., 2005, “Heavy flags undergo spontaneous oscillations in flowing water,” Physical Review Letters, Vol. 94, pp. 094302-094309

    Stamhuis, E. J. and Videler, J. J., 1995, “ Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry,” Journal of Experimental Biology, Vol. 198, pp. 283-294.

    Taylor, G., Nudds, R., and Thomas, A. L. R., 2003, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, Vol. 425, pp. 707-788.

    Triantafyllou, M. S., Techet, A. H. and Hover, F. S., 2004, “Review of experimental work in biomimetic foils,” IEEE Journal of Oceanic Engineering., Vol. 29, pp. 585-594.

    Triantafyllou, G. S., Triantafyllou, M. S., and Grosenbauch, M. A., 1993, “Optimal thrust development in oscillating foils with application to fish propulsion,” Journal of Fluid Structural, Vol. 7, pp. 205-224.

    Triantafyllou, M. S., 1994, http://web.mit.edu/towtank/www/, Massachusetts Institute of Technology Project.

    Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P., 2000, “Hydrodynamics of fishlike swimming,” Annual Review of Fluid Mechanics, Vol. 32, pp. 33-53.

    Vandenberghe, N., Childress, S., and Zhang, J., 2004, “Symmetry breaking leads to forward flapping flight,” Journal of Fluid Mechanics, Vol. 506, pp. 147-155.

    Vogel, S., 1994, Life in Moving Fluids, 2nd ed., Princeton University Press, Princeton, New Jersey.
    Webb, P. W., 1984, “Form and function in fish swimming,” Scientific America., Vol. 251, pp. 58-68.

    Wilga C. D. and Lauder G. V., 2004, “Hydrodynamics function of the shark's tail,” Nature, Vol. 430, pp. 850-858

    Willert, C., 1997, “Stereoscopic digital particle image velocimetry for application in wind tunnel flows,” Measurement Science Technology, Vol. 8, pp. 1465-1479.

    王田苗, 2002, “水下仿生機器鱼的研究發展II—小型實驗機器的研製,” 機器人, Vol. 24, pp. 23-31.

    陳政宏, 2002,“鯉魚如何躍龍門-水中生物的推進法,”科學發展, 12月版, pp. 48-51.

    陳政宏, 李志揚, 2000, “淺談流體中生物的推進方法,” SciScape 專題文章, http://www.sciscape.org/.

    丁上杰, 2007, 魚類高度可撓性鰭片之流體推進機制研究, 國立清華大學動力機械工程學系博士論文計劃書.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE