研究生: |
黃莉玲 Li-ling Huang |
---|---|
論文名稱: |
牙齒矯正線及牙齒矯正微型骨釘之陽極處理 Anodization of orthodontic archwires and orthodontic miniscrews |
指導教授: |
陳信文
Sinn-wen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 陽極氧化 、矯正線 、微型骨釘 、顏色 |
外文關鍵詞: | anodization, archwires, miniscrews, color |
相關次數: | 點閱:45 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於健康與美觀上的要求,牙齒矯正是現代人常見之醫療行為。矯正線與微型骨釘是牙齒矯正中最基本的器材,於生物相容性和機械性質考量,主要使用鈦與鈦基材之合金材料。陽極處理控制與改變金屬表面層之氧化,而光學干涉效應會因氧化層厚度與結構之改變產生著色效果,更能滿足美觀上要求。此外此氧化層表面性質亦對矯正線與拖架間的摩擦力,以及微型骨釘的骨質密合度造成影響。因此本研究將矯正線與微型骨釘於進行陽極處理,以及量測矯正線與拖架間摩擦力,從陽極處理條件對表面氧化層之影響和氧化層的微觀分析,清楚瞭解氧化層與著色、摩擦力、和骨質密合性的關係。結果顯示:陽極氧化之β-鈦矯正線隨不同電壓值呈現不同顏色;處理前後表面形態無太大變化,陽極化產生之氧化層厚度隨電壓值升高而增大,結晶結構則皆是非結晶性,氧化層組成由表面二氧化鈦、較深處則出現次氧化物,因此顏色主要由氧化層厚度控制,多彩顏色乃透明氧化層發生干涉效應所致。當電壓值較高、拉長氧化時間,則氧化層由透明轉為不透明,出現白色外觀;縱深組成變化與多彩矯正線類似,亦於內層出現次氧化層,但氧化層轉變為結晶結構、氧化層厚度亦大為增加,推測白色外觀應為結晶化所致,其顏色則不能以干涉效應解釋。另加入少量氟離子於電解液中,則成功於微型骨釘表面生成奈米洞,此中孔級奈米孔洞能增加表面粗糙度和面積,應能提升骨質密合性,縱深組成分析則少量氟元素含於氧化層中。陽極處理後之氧化β-鈦矯正線,因為表面氧化層之生成增厚,也降低了其與托架間之摩擦力。使用束縛橡皮圈式拖架組,動摩擦力大小依序為β-鈦矯正線>陽極氧化β-鈦矯正線、鎳-鈦矯正線。改變移動速率從5 mm / min 下降至0.5 mm / min,動摩擦力值則隨速度下降改變不大。若使用新式自動結紮Damon 3MX系拖拖架,因幾乎無正向力存在,則摩擦力接近為零。
Dental archwires and miniscrews are frequently used in the orthodontic treatments which are very popular nowadays owing to various healthy and cosmetic reasons. Commercial titanium and titanium-based archwires and miniscrews are anodized and examined in this study. The β-Ti archwires with different colors are produced by anodization with different anodized voltages. The surface of anodized wire is titanium oxide, and the oxidation states of Ti vary from TiO2 on the surface to inwardly a mixture of TiO2 and Ti2O3. For most of the anodization conditions, the oxide layers are amorphous. The thickness of oxide layer is determined by TEM and AES. The color of the anodized β-Ti archwires are primarily controlled by the thickness of the oxides which increases with the magnitudes of the applied voltage. With longer anodization time, the archwires change to milky white color. Composition and structure analysis results of the milky white archwires indicate that it is still TiO2 on the surface, but the titanium oxide layers became crystalline. Ti-6Al-4V miniscrews with mesoporous surfaces are produced by anodization using electrolyte with a small amount of fluorine. The mesoporous surfaces could significantly affect the products' osseointegration properties which need to be further explored. In the study of friction experiments, the anodized β-Ti and Ni-Ti archwires shows lower friction than the β-Ti archwires in the conventional stainless steel bracket with elastomeric ligature. When the friction experiments are carried out using the Damon3MX self-ligating bracket rather than the conventional bracket, the friction is singnificantly lower for all the archwires with and witout anodization and no differences can be observed between various archwires.
1. 王盈錦等編著, “生物醫學材料”, 臺北市:合記, (2002).
2. 廖祐伸, 吳方棟, “第三代主動矯正線”, 牙醫學雜誌, Vol. 19, pp. 99-104, (1999).
3. 簡仁德, “Ni-Ti齒列矯正線介紹”, 材料與社會, 第78期, (1993).
4. C. J. Whitters, R. Strang, D. Brown, R. L. Clarke R. V. Curtis, P. V. Hatton, A. J. Ireland, C. H. Lloyd, J. F. McCabe, J. W. Nicholson, S. N. Scrimgeour, J. C. Setcos, M. Sherriff, R. V. Noort, D. C. Watts and D. Wood, “Dental materials: 1997 literature review”, Journal of Dentistry, Vol. 27, pp. 401-435, (1999).
5. T. R. Meling and J. Odegaard, “The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires”, Angle Orthodontist, Vol. 68, pp. 357-368, (1998).
6. T. R. Meling and J. Odegaard. “The effect of short-term temperature changes on the mechanical properties of rectangular nickel titanium archwires tested in torsion”, Angle Orthodontist, Vol. 68, pp. 369-376, (1998).
7. R. Schneevoigt, A. Haase, V. L. Eckardt, W. Harzer and C. Bourauel, “Laboratory analysis of superelastic NiTi compression springs”, Medical Engineering and Physics, Vol. 2, pp. 119-125, (1999).
8. 劉國雄等編著, 工程材料科學, 台北巿:全華, pp. 576-579, (1991).
9. M. Papadopoulos and F. Tarawneh, “The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review”, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Vol. 103 (5), pp. e6 - e15, (2007).
10. P. I. Branemark, U. Breine and O. Hallen, “Repair of Defects in the Mandible”, Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, Vol. 4, pp. 100-108, (1970).
11. S. Miyawaki, I. Koyama, M. Inoue, K. Mishima, T. Sugahara and T. Takano-Yamamoto,“Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 124, pp. 373-378,(2003).
12. L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration”, Dental Materials, Vol. 23, pp, 844-854, (2007).
13. X. B. Zheng, M.H. Huang and C. X. Ding, “Bond strength of plasma-sprayed hydroxyapatite / Ti composite coatings”, Biomaterials, Vol. 21, pp. 841-849, (2000).
14. Young and Lawrence, “Anodic oxide films”, London: Academic Press, (1961).
15. S. W. Chen, C. L. Yang and C. W. Lin, “Colorful dental archwires”, Journal of the Chinese Institute of Chemical Engineers, Vol. 37(2), pp. 193-194, (2006).
16. C. L. Yang, F. L. Chen and S. W. Chen, “Anodization of the dental arch wires”, Materials Chemistry and Physics, Vol. 100, pp. 268-274, (2006).
17. S. W. Chen, C. L. Yang and J W. E. Chen, "Metallic archwires of various colors and their preparation methods", Patent of Taiwan ROC, I281389, (2007).
18. E. McCafferty and J. P. Wightman, “An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium”, Applied Surface Science, Vol. 143, pp. 92-100, (1999).
19. E. McCafferty and J. P. Wightman, “Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method”, Surface and Interface Analysis, Vol. 26, pp. 549-564, (1998).
20. A. Aladjem, “Anodic oxidation of titanium and its alloys ”, Journal of Materials Science, Vol. 8(5), pp. 688-704, (1973).
21. A. K. Sharma, “Anodizing titanium for space applications”, Thin Solid Films, Vol. 208, pp. 48-54, (1992).
22. E. Gaul, “Coloring titanium and related metals by electrochemical oxidation”, Journal of Chemical Education, Vol. 70, pp. 176-178, (1993).
23. Y. T. Sul, C. B. Johansson, Y. Jeong and A.Tomas, “The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes”, Medical Engineering and Physics, Vol. 23, pp.329-346, (2001).
24. G. Blondeau, M. Froelicher and M. Froment, “Structure and growth of anodic oxide films on titanium and TA6V alloy”, Journal of Less Common Metals, Vol. 56, pp. 215-222. (1977).
25. S. Hrapovic, B. L. Luan, M. D'Amours, G. Vatankhah and G. Jerkiewicz, “Morphology, chemical composition, and electrochemical characteristics of colored titanium passive Layers”, Langmuir, Vol. 17, pp. 3051-3060, (2001).
26. J. L. Delplancke, M. Degrez, A. Fontana and R. Winand, “Self - colour anodizing of titanium”, Surface and Coatings Technology, Vol.16, pp.153-162, (1982).
27. S. V. Gils, P. Mast, E. Stijns and H. Terryn, “Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry”, Surface and Coatings Technology, Vol. 185, pp. 303-310, (2004).
28. H. J. Oh, J. H. Lee, Y. Jeong, Y. J. Kim and C. S. Chi, “Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method”, Surface and Coatings Technology, Vol. 198, p. 247, (2005).
29. G. Blondeau, M. Froelicher, M. Froment and A. H. L. Goff, “Simultaneous determination of the optical indices of an absorbant film and its metallic substrate by statistical analysis of spectroreflectometric data: Application to the oxide / titanium system”, Thin Solid Films, Vol. 38(33), pp. 261-270, (1976).
30. C. Jaeggi, P. Kern, J. Michler, J. Patscheider, J. Tharian and F. Munnik, “Film formation and characterization of anodic oxides on titanium for biomedical applications”, Surface and Interface Analysis, Vol. 38(4), pp. 182-185, (2006).
31. C. Jaeggi, P. Kern, J. Michler, T. Zehnder and H. Siegenthaler, “Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices”, Surface and Coatings Technology, Vol. 200, pp. 1913-1919, (2005).
32. H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon and G. E. Thompson, “Crystallization of anodic titania on titanium and its alloys”, Corrosion Science, Vol. 45, pp. 2063-2073, (2003).
33. J. M. Macak, H. Tsuchiya and P. Schmuki “High-aspect-ratio TiO2 nanotubes by anodization of titanium”, Angewandte Chemie International Edition, Vol. 44, pp. 2100-2102, (2005).
34. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, “Smooth anodic TiO2 nanotubes”, Angewandte Chemie International Edition, Vol. 44, pp. 7463-7465, (2005).
35. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications”, Solar Energy Materials and Solar Cells, Vol. 90, pp. 2011-2075, (2006).
36. K. Yasuda, J. M. Macak, S. Berger, A. Ghicov and P. Schmuki, “Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals”, Journal of the Electrochemical Society, Vol. 154 (9), pp. C472-C478, (2007).
37. J. Angkhana, R. Domenico, B. Chris, S. Ron and A. Duncan, “Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte”, Journal of Materials Science, Vol. 42, pp. 6729-6734, (2007).
38. M. Bestetti, S. Franz, M. Cuzzolin, P. Arosio and P. L. Cavallotti, “Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4 / HF solutions”, Thin Solid Films, Vol. 515, pp. 5253-5258, (2007).
39. S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson and H. Habazaki, “Formation of porous anodic alumina in alkaline borate electrolyte”, Electrochimica Acta, Vol. 52, p. 681, (2006).
40. S. Trigwell, R. D. Hayden, K. F. Nelson and G. Selvaduray, “Effects of surface treatmenton the surface chemistry of NiTi alloy for biomedical applications”, Surface and Interface Analysis, Vol. 26, pp. 483-489, (1998).
41. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal and E. Mahe, “Structure and composition of passive titanium oxide films”, Materials Science and Engineering B, Vol. 47, pp. 235-243, (1997).
42. J. Lausmaa and B. Kasemo and H. Mattsson, “Surface spectroscopic characterization of titanium implant materials," Applied Surface Science, Vol. 44, pp. 133-146, (1990).
43. F. T. Cheng, P. Shi, G. K. H. Pang, M. H. Wong and H. C. Man, “Microstructural characterization of oxide film formed on NiTi by anodization in acetic acid”, Journal of Alloys and Compounds, Vol. 438, pp. 238-242, (2007).
44. F. T. Cheng, P. Shi and H. C. Man, “Nature of oxide layer formed on NiTi by anodic oxidation in methanol”, Materials Letters, Vol. 59, pp. 1516-1520, (2005).
45. J. Kawakita, M. Stratmann, A. W. Hassel, “High voltage pulse anodization of a NiTi shape memory alloy”, Journal of the Electrochemical Society, Vol. 154(6), pp. C294-C298, (2007).
46. K. A. Thomas and S. Cook. “An evaluation of variables influencing implant fixation by direct bone apposition”, Journal of Biomedial Materials Research, Vol. 19, pp. 875-901, (1985).
47. W. Khang, S. Feldman, C. E. Hawley and J. Gunsolley, “A multi-center study comparing dual acid-etched and machined-surfacd implants in varios bone qualities”, Journal of Periodontology, Vol. 72, pp. 1384-1390, (2001).
48. A. Kirsch and K. Donath, “ Tierexperimentelle untersuchungen zur bedeutung der mikromorphologie von titanoberfla¨chen”, Fortschritte der Zahna¨rztlichen Implantologie , Vol. 1, pp. 35-40, (1984).
49. R. K. Buser, S. Schenk, J. P. Steinemann and C. H. Fiorellini, “Influence of surface characteristics on bone integration of titanium implants. A histometric study in mainature pigs”, Journal of Biomedical Materials Research, Vol. 25, pp. 889-902, (1991).
50. S. Hansson and M. Norton, “The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model”, Journal of Biomechanics, Vol. 32, pp. 829-836, (1999).
51. S. Meyer, R. Gorges and G. Kreisel, “Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition”, Thin Solid Films, Vol. 450, pp. 276-281, (2004).
52. B. Yang, M. Uchida, H. M. Kim, X. Zhang and T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment”, Biomaterials, Vol. 25, pp. 1003-1100, (2004).
53. H. Ishizawa and M. Ogino, “Formation and characterization of anodic titanium oxide films containing Ca and P”, Journal of Biomedical Materials Research, Vol. 29, pp. 65-72, (1995).
54. H. Ishizawa and M. Ogino, “Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment”, Journal of Biomedical Materials Research, Vol. 29, P. 1071-1079, (1995).
55. K. S. Raja, M. Misra and K. Paramguru, “Deposition of calcium phosphate coating on nanotubular anodized titanium”, Materials Letters, Vol. 59, 2137-2141, (2005).
56. S. H. Oh, R. R. Fino˜nes, C. Daraio, Li. H. Chen and S. Jin, “Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes”, Biomaterials, Vol. 26, pp. 4938-4943, (2005).
57. J. W. Choi, S. J. Heo, J. Y. Koak, S. K. Kim, Y. J. Lin, S. H. Kin and J. B. Lee, “Biological responses of anodized titanium implants under different current voltages” Journal of Oral Rehabilitation, Vol. 33, pp. 889-897, (2006).
58. C. Larsson, L. Emanuelsson, P. Thomsen, L. E. Ericson, B.O. Aronsson, M. Rodahl, B. Kasemo and J. Lausmaa,”Bone response to surface-modified titanium implants:studies on the tissue response after one year to machined and electropolished implants with differentoxide thicknesses”, Journal of Materials Science: Materialsin Medicine, Vol. 8, pp. 721-729, (1997).
59. 高俊義, “以動物實驗探討經陽極表面處理微型骨釘之癒合效果與穩固度評估”, 台北醫學大學口腔醫學院牙醫學系碩士論文, (2005).
60. K. Tanne, S. Matsubara, T. Shibaguchi and M. Sakada, “Wire friction from ceramic brackets during simulated canine retraction”, Angle Orthodontist, Vol. 61, pp.285-290, (1991).
61. P. V. Angolkar, S. Kapali, M. G. Duncanson and R. S. Nanda, “Evaluation of friction between ceramic brackets and orthodontic wire of four alloys”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 98, pp.499-506, (1990).
62. R. P. Kusy, J. Q. Whitley and M. J. Prewitt, “Comparison of the frictional coefficients for selected archwire bracket slot combinations in the dry and wet states”, Angle Orthodontist, Vol.61, pp.293-302, (1991).
63. J. Dickson and S. Jones, “Frictional characteristics of a modified ceramic bracket”, Journal of Clinical Orthodontics, Vol. 30, pp. 516-518. (1996).
64. V. Cacciafesta, M. F. Sfondrini, A. Ricciardi, A. Scribante ,C. Klersy and F. Auricchio, “Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-archwire combinations”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol.124, pp. 403-409. (2003).
65. D. C. Tidy, “Frictional forces in fixed appliances”, American Journal of Orthodontics and Dentofacial Orthopedics, 96, pp.249-254, (1989).
66. D. Drescher, C. Bourauel and H. A. Schumacher, “Frictional forces between bracket and arch wire”, American Journal of Orthodontics and Dentofacial Orthopedics, 96, pp. 397-404, (1989).
67. H. M. Omana, R. N. Moore and M. D. Bagby, “Frictional properties of metal and ceramic brackets”, Journal of Clinical Orthodontics, Vol. 26(7), pp. 425-432, (1992).
68. C. A. Frank and R. J. Nikolai, “A comparative study of frictional resistances between orthodontic bracket and arch wire”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 78(6), pp. 593-560, (1980).
69. S. Kapali, P. V. Angolkar, M. G. Duncanson and R. S. Nanda, “Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys” , American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 98, pp. 117-126, (1990).
70. G. D. Edwards, E. H. Davies and S. P. Jones, “The ex vivo effect of ligation technique on the static frictional resistance of stainless steel brackets and archwires”, Journal of Clinical Orthodontics, Vol. 22, pp. 145-153, (1995).
71. L. Pizzoni, G. Ravnholt and B. Melsen, “Frictional forces related to self-ligating brackets”, European Journal of Orthodontics, Vol. 20, pp. 283-291, (1998).
72. S. Thomas, M. Sherriff and D. Birnie, “A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of pre-adjusted edgewise brackets tied with elastomeric ligatures”, European Journal of Orthodontics, Vol. 20(5), pp. 589-596, (1998).
73. E. Bazakidou, R. S. Nanda, M. G. Duncanson and P. Sinha, “Evaluation of frictional resistance in esthetic brackets”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 112, pp. 138-144, (1997).
74. N. W. T. Harradine, “Current products and practices self-ligating brackets: where are we now? ”, Journal of Orthodontics, Vol. 30, pp. 262-273, (2003).
75. G. E. Read-Ward and S. P. Jones, “A comparsion of self- ligating and conventional orthodontic bracket systems”, British Journal of Orthodontics
, Vol. 24, pp. 309-317, (1997).
76. J. L. Berger, “The influence of the SPEED bracket’s self ligating design on force levels in tooth movement, a comparative in vitro study”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 97, pp.219-228, (1990).
77. P. K. Shivapuja and J. Berger, “A comparative study of conventional ligation and self ligation bracket systems”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 106, pp.472-480, (1994).
78. L. Pizzoni, G. Ravnholt and B. Melsen, “Frictional forces related to self-ligating brackets”, European Journal of Orthodontics, Vol. 20, pp. 283-291, (1998).
79. V. Cacciafesta, M. F. Sfondrini, A. Ricciardi, A. Scribante, C. Klersy and F. Auricchio, “Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 124(4), pp. 395-402, (2003).
80. B. KHambay, D. Milett and S. McHugh, “Evaluation of methods of archwire ligation on frictional resistance”, European Journal of Orthodontics, Vol. 26(3), pp. 327-332, (2004).
81. D. J. De Franco, R. E. Spiller Jr and J. A. von Fraunhofer, “Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations”, Angle Orthodontist, Vol. 65(1), pp. 63-72, (1995).
82. J. L. Vaughan, M. G. Duncason, R. S. Nanda and G. F. Currier, “Relative kinetic frictional forces between sintered stainless steelbrackets and orthodontic wires”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 107, pp. 20-27, (1995).
83. R. P. Kusy and J. Q. Whitley, M. J. Mayhew and J. E. Buckthal. “Surface roughness of orthodontic archwires via Laser Spectroscopy”, Angle Orthodontist, Vol. 58, pp. 33-45, (1988).
84. R. P. Kusy and J. Q. Whitley, “Effevt of sliding velocity on the coefficients of friction in a model orthodontic system”, Dental materials, Vol. 5, pp.235-240, (1989).
85. R. P. Kusy and J. Q. Whitley, “Effects of surface roughness on the coefficients of friction in a model orthodonticsystem”, Journal of Biomechanics, Vol. 23, pp. 913-925, (1990).
86. J. A. Schey, “Tribology in Metalworking FRICTION, LUBRICATION AND WEAR”, Metals Park, Ohio: American Society for Metals, (1983).
87. R. P. Kusy, E. J. Tobin, J. Q. Whitley and P. Sioshansi, “Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, single pass regime”, Dental materials, Vol. 8, pp. 167-172, (1992).
88. C. J. Burstone and F. Frazin-Nia, “Production of low-friction and colored TMA by ion implantation”, Journal of Clinical Orthodontics, Vol. 29, pp. 453-461, (1995).
89. R. Ryan, G. Walker, K. Freeman and G. J. Cisneros, “The effects of ion implantation on rate of tooth movement: An in vitro model”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 112, pp. 64-68, (1997).
90. K. Kula, C. Phillips, A. Gibilaro and W. R. Proffit, “Effect of ion implantation of TMA archwires on the rate of orthodontic sliding space closure”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 114, pp. 577-581, (1998).
91. B. Grosgogeat, E. Jablonska, J. M. Vernet, N. Jaffrezic, M. Lissac and L. Ponsonnet, “Tribological response of sterilized and un-sterilized orthodontic wires”, Materials Science and Engineering C, Vol. 26, pp. 267-272, (2006).
92. K. L. Baker, L. G. Nieberg and A. D. Weimer, “Frictional changes in force values caused by saliva substitution”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 91, pp. 316-320, (1987).
93. J. G. Stannard, J. M. Gau and M. Hanna, “Comparative friction of orthodontic wires under dry and wet conditions”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol.89, pp. 485-491, (1986).
94. A. Downing, J. F. McCabe and P. H. Gordon, “The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires”, British Journal of Orthodontics, Vol. 22, pp. 41-46, (1995).
95. J. L. Vaughan, M. G. Duncanson Jr, R. S. Nanda and G. F. Currier, “Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 107(1), pp. 20-27, (1995).
96. D. H. Pratten, K. Popli, N. Germane and J. C. Gunsolley, “Frictional resistance of ceramic and stainless steel in orthodontic brackets”, American Journal of Orthodontic and Dentofacial Orthopedics, Vol. 98, pp.398-403, (1990).
97. A. P. Sims, N. E. Waters, D. J. Birnie and R. J. Pethybridge, “A comparison of forces required to produce tooth movement in vitro using two self-ligating brackets and a preadjusted bracket employing two types of ligation”, European Journal of Orthodontics, Vol. 15, pp.377-385, (1993).
98. C. R. Saunders and R. P Kusy, “Surface topography and frictional characteristics of ceramic brackets”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 106, pp.76-87, (1994).
99. R. H. Ogata, R. S. Nanda M. G. Duncanson , P. K. Sinha and G. F. Currier, “Frictional resistances in stainless steel bracket-wire combinations with effects of vertical deflections”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 109(5), pp. 535-42, (1996).
100. G. F. Andreasen and F. R. Quevedo, “Evaluation of frictional forces in the 0.022 x 0.028 edgewise bracket in vitro”, Journal of Biomechanics, Vol. 3, pp.151-160, (1970).
101. R. Prososki, M. Bagby and L. C. Erickson, “Static frictional force and surface roughness of nickel-titanium arch wires”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 100, pp.341-348, (1991).
102. A. P. Sims, N. E. Waters and D. J. Birnie, “A comparison of the forces required to produce tooth movement ex vivo through three types of pre-adjusted brackets when subjected to determined tip and torque values”, British Journal of Orthodontics, Vol. 21, pp.367-373, (1994).
103. M. Tselepis, P. Brockhurst and V. C. West, “Frictional resistance between brackets and archwires”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 106, pp. 131-138, (1994).
104. K. Yamaguchi, R.S. Nanda, N. Morimoto and Y. Oda, “A study of force application, amount of retarding force, and bracket width in sliding mechanics”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 109(1), pp. 50-56, (1996).
105. J. R. Bednar, G. W. Gruendeman and J. L. Sandrik , “A comparative study of frictional forces between orthodontic brackets and arch wires”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 100, pp. 513-522, (1991).
106. A. J. Ireland, M. Sheriff and F. McDonald, “Effect of bracket and wire composition on frictional forces”, European Journal of Orthodontics, Vol. 13, pp.322-328, (1991).
107. 林麗娟、田大昌, “微結構分析技術之介紹”, 工業材料雜誌, 第181期, pp. 73-79, (2002).
108. 鄭紹章、胡一君、周曉宇、陳至信, “聚焦離子束輔助沉積三維奈米懸浮結構技術之探討與應用”, 真空科技, 第19卷3期, pp. 21-25, (2006).
109. J. Mayer, L. A. Giannuzzi, T. Kamino and J. Michael, “TEM sample preparation and FIB-induced damage”, Materials Research Society, Vol. 32, pp. 400-407 (2007).
110. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer, USA, (1992).
111. A. F. Carley, P. R. Chalker, J. C. Riviere and M. W. Roberts, “The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra”, Journal of the Chemical Society, Faraday Transactions, Vol. 83, pp. 351-370, (1987).
112. B. Siemensmeyer and J. W. Schultze, “XPS and UPS studies of gas-phase oxidation, electrochemistry and corrosion behaviour of Ti and Ti5Ta”, Surface and Interface Analysis, Vol. 16, p. 309, (1990).
113. S. Hofman, J. M. Sanz, Journal of Trace and Microprobe Techniques, Vol. 1, p. 213, (1982).
114. M. Wolff, J. W. Schultz and H.-H. Strehblow, “Low-energy implantation and sputtering of TiO2 by nitrogen and argon and the electrochemical reoxidation”, Surface and Interface Analysis, Vol. 17, pp. 726-736, (1991).
115. G. W. Simmons and B. C. Beard, “Characterization of acid-base Properties of the hydrated oxides on iron and titanium metal surfaces”, Journal of Physical Chemistry, Vol. 91, pp. 1143-1148, (1987).
116. K. Nassau, “The Physics and Chemistry of Color”, New York: Wiley, (1983).
117. G. Balasundaram, C. Yao and T. J. Webster, “TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion”, Journal of Biomedical Materials Research A, Vol. 84A, pp. 447-453, (2008)
118. I. L. Singer and H. M. Pollock, “Fundamentals of Friction: Macroscopic and Microscopic Processes”, Kluwer Academic, pp.3-24, (1992).
119. Y. Kimura, “A theoretical analysis of the surface coverage of frictional surface with adsorbed lubricant Film”, Trans. JSLE, Vol. 15, pp. 91-98, (1970).
120. H. Okabe, M. Masuko and K. Sakurai, “Dynamic behavior of surface-adsorbed molecules under boundary lubrication”, ASLE
Trans., Vol. 24, pp. 467-473, (1981).
121. N. P. Suh and H. C. Sin, “The genesis of friction”, Wear, Vol. 69, pp. 91-114, (1981).
122. Z. Rymuza, “Energy concept of the coefficient of friction”, Wear, Vol. 199, pp. 187-196, (1996).
123. J. Qu, P. J. Blau, T. R. Watkins, O.B. Cavin and N. S. Kulkarni, “Friction and wear of titanium alloys sliding against metal polymer, and ceramic counterfaces”, Wear, Vol. 258, pp. 1348–1356,
124. M. Niinomi, D. Kuroda, K. I. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro and A. Suzuki, “Corrosion wear fracture of new β - type biomedical titanium alloys”, Materials Science and Engineering A, Vol. 263(2), pp. 193-199, (1999).
125. C. W. Wang and C.T. Kao, “The friction resistance between orthodontic bracket and wire - a review article”, Journal of the Taiwan Association of Orthodontists, Vol. 17(4), pp. 43-49, (2005).
126. R. P. Kusy, “A review of contemporary archwires their properties and characteristics”, Angle Orthodontist, Vol. 67, pp. 197-207, (1997).