研究生: |
黃立皓 Huang, Lee-Hao |
---|---|
論文名稱: |
基於脈衝寬度調制之微機電微振鏡雷射掃描投影系統 MEMS Laser Scanning Projection System Based on Pulse Width Modulation |
指導教授: |
林凡異
LIN, FAN-YI |
口試委員: |
盧向成
LU, SHIANG-CHENG 蔡睿哲 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 微機電微振鏡 、雷射 、光達 、掃描投影系統 、脈衝寬調制 |
外文關鍵詞: | MEMS mirror, Laser, LiDAR, Scanning projection system, Pulse width modulation |
相關次數: | 點閱:89 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文基於本研究團隊開發之單色、無灰階變化且無成像形變的微機電微振鏡
雷射掃描投影系統,進一步設計並實現基於脈衝寬度調制 (Pulse Width Modulation, PWM) 之多光源彩色灰階演算法,並提出架構優化方案以提升整體的成像品質。
首先,本研究分析單色灰階影像的生成方法,選擇脈衝寬度調制作為主要調制
方式,並詳細探討脈衝寬度、儀器取樣率、記憶體容量限制及人眼最小可察覺之
誤差等因素對灰階等級的影響,藉此設定適當的系統參數,達成了單色靜態及動
態灰階影像之有效生成。此外,本研究亦針對共振式微機電振鏡掃描過程中的像
素變形進行了深入分析,指出中央區域的高速運動是造成像素變形的主要原因,
並提出透過調整掃描距離和視距以有效改善此現象。
在 彩 色 影 像 投 影 系 統 的 建 構 方 面 , 本 研 究 採 用 RGB 多 光 源 架 構 實 現 光 學 混合,並透過光纖式分波多工器有效降低不同波長間的色散現象,同時調整雷射驅
動電流以達成最佳之色彩混合效果。此外,本研究透過導入偏振分光器 (PBS) 架
構及光束縮束鏡 (Beam reducer) 進一步改善系統架構,有效地降低了光束直徑大於鏡面導致的中央亮點問題,顯著提升投影系統的影像亮度與清晰度,進一步增進
了彩色影像的整體視覺品質。
This thesis builds upon our research group’s previously developed monochromatic MEMS-based laser beam scanning projection system, characterized by single brightness level and distortion-free imaging, to design and implement a multi-wavelength color grayscale algorithm based on pulse width modulation. Further architectural optimizations were proposed to enhance overall imaging quality significantly.
Initially, the research analyzed single-color grayscale image generation methods and selected PWM as the main modulation approach. Various influencing factors, such as pulse width, sampling rate limitations, memory capacity constraints, and the minimum error detectable by the human eye, were thoroughly investigated to determine appropriate system parameters. As a result, the effective generation of single-color static and dynamic
grayscale images was successfully achieved. Additionally, detailed analyses of pixel distortion during MEMS mirror resonant scanning were performed, identifying higher distortion in central areas due to faster mirror movements and proposing adjustments in scanning and viewing distances to mitigate this issue effectively.
An RGB multi-laser source architecture was utilized to construct the color image projection system with optical mixing through fiber-based wavelength division multiplexers to minimize dispersion effects among different wavelengths. Laser driver currents were fine-tuned to achieve optimal color blending. Furthermore, a polarization beam splitter architecture and beam reducer were incorporated to address the central bright spot issue
caused by beam diameters exceeding the mirror size, thereby significantly improving the brightness and clarity of the projected images and enhancing the overall visual quality of color projections.