簡易檢索 / 詳目顯示

研究生: 李炯男
論文名稱: 低溫成長砷化鎵異質結構砷析出工程之研究
The Study of Arsenic Precipitates Engineering with Low-Temperature Grown GaAs Heterostructures
指導教授: 黃金花
J. H. Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 47
中文關鍵詞: 砷化鎵異質結構分子束磊晶
外文關鍵詞: GaAs, heterostructure, molecular beam epitaxy
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 砷化銦鎵/砷化鎵和砷化鋁鎵/砷化鎵異質結構在低基板溫度下(∼230℃)以分子束磊晶成長,這導致過多的砷併入在磊晶層裡。在之後的退火過程中(500∼700℃),這些過多的砷形成砷析出物。砷析出物的粗化過程隨著退火溫度和時間的增加愈趨於顯著。
    在退火溫度為500℃、退火時間30秒的情況下,靠近砷化鋁鎵/砷化鎵異質結構的介面有明顯的砷析出物聚合區和砷析出物空乏區。此外,在退火溫度600℃的條件下,砷析出物在靠近砷化銦鎵/砷化鎵異質結構的介面處形成兩排列陣;在更高的退火溫度下(~700℃),砷析出物則偏向於散亂排列。這些結果是由砷原子擴散越過異質結構的介面所造成。砷原子擴散的過程可由降低砷析出物/基體的介面能和介面附近的晶格應變來解釋。

    對於在較高退火溫度和較長退火時間下,砷析出物的粗化過程是一種“奧斯特華熟化”的過程。藉由不同條件的退火過程可以來控製是後砷析出物的大小和分佈,這種退火後形成的兩相系統(砷析出物/基體)在電子或光電元件上有很大的應用及幫助。


    In this study, InGaAs/GaAs and AlGaAs/GaAs multiple quantum well (MQW) structures have been grown by molecular beam epitaxy (MBE) at low substrate temperatures (~230℃). This results in an excess of arsenic incorporated in the epilayers and upon subsequent annealing (500~700℃), the excess arsenic precipitates. The coarsening of the As clusters is observed to increase with the temperature or time of annealing.
    In the AlGaAs/GaAs MQW structures, there are obvious As precipitates accumulation zones (PAD) and precipitates depletion zones (PDZ) near the interfaces of the AlGaAs/GaAs heterostructure annealed at 500℃ for 30s. For the InGaAs/GaAs MQW structures, arsenic precipitates form two dot arrays near each InGaAs/GaAs interface when annealed at 500 and 600℃ and lose this confinement at higher annealing temperature (~700℃). The results are due to the diffusion of arsenic atoms across the interfaces of the heterostructures. The process of arsenic precipitates in the LT heterostructure can be explained by the reduction in the arsenic precipitates/matrix interfacial energy or the lattice-mismatch strain near the interfaces.

    For an increase of annealing temperature and time, the coarsening of As precipitates follows the process of Ostwald ripening. The annealing processes controlling the final sizes and distribution of As precipitates are important, and the properties of the two-phase system are useful in many electronic and optoelectronic applications.

    CONTENTS CHAPTER 1 INTRODUCTION 1 1.1 Historical development 1 1.2 Motivation and direction 2 CHAPTER 2 MATERIAL CHARACTERISTICS TECHNICAL BACHGROUND 6 2.1 Basic features of low temperature MBE materials 6 2.2 Application 10 CHAPTER 3 EXPERIMENT 17 3.1 Film growth 17 3.2 Anneaning 18 3.3 TEM specimen preparation 18 CHAPTER 4 RESULT AND DISCUSSION 21 4.1 InGaAs/GaAs heterojunction 21 4.2 AlGaAs/GaAs heterojunction 27 CHAPTER 5 CONCLUSION 42 References 44

    References
    1. Cho A. Y. Surf. Sci. 17, 494-503 (1969)
    2. Murotani T., Shimanoe T., Mitsui S. J. Cryst. Growth 45, 302-8 (1978)
    3. Smith F. W., Calawa A. R., Chen C-L, Mantra M. I., Mahoney L. J. IEEE Electron Device Lett. 9, 77-80 (1988)
    4. Eaglesham D. J., Pfeiffer L. N., West K. W., Dy Kaar D. R. Appl. Phys. Lett. 58, 65-67 (1991)
    5. Ibbetson J. P., Mirin R. P., Mishra U. K., Gossard A. C. J. Vac. Sci. Technol. B12, 1050-52 (1994)
    6. Melloch M. R., Miller D. C., Das B. Appl. Phys. Lett. 54, 943-45 (1989)
    7. Melloch M. R., Otsuka N., Mahalingam K., Chang C. L., Kirchner P. D. et al. Appl. Phys. Lett. 61, 177-179 (1992)
    8. T. M. Cheng, C. Y. Chang, Albert Chin, M. F. Huang, and J. H. Huang, Appl. Phys. Lett. 64, 2517 (1994)
    9. K.Mahalingam, N. Otsuka, M. R. Melloch, and J. M. Woodall, Appl. Phys. Lett. 60, 3253 (1992)
    10. T. M. Cheng, A. Chin, C. Y. Chang, M. G. Huang, K. Y. Hsieh, J. H. Huang. Appl. Phys. Lett. 64, 1546 (1994)
    11. Cheng T. M., Chang C. Y., Chang T. C., Huang J. H., Huang M. F. Appl. Phys. Lett. 64, 3626-28 (1994)
    12. M. Kaminska, A. Litiental-Weber, E. R. Weber, T. George, J. G. Kortright, F. W. Smith, B-Y Tsaur, and R. Calawa Appl. Phy. Lett. 54,1881 (1989)
    13. K. M. Yu, M. Kaminska, and Z. L. Weber J. Appl. Phys. 72, 2850 (1992)
    14. F. W. Smith, C. L. Chen, G. W. Turner, M. C. Finn, L. J. Mahoney, M. J. Manfra, and A. R. Calawa IEDM, 383 (1988)
    15. M. Kaminska, E. R. Weber, Z. Liliental-Weber, R. Leon, Z. U. Rek, J. Vac. Sci. Technol. B7, 710 (1989)
    16. M. O. Manasreh, D. C. Look, K. R. Evans, and C. C. Stutz Phys. Rev. B41, 10272 (1990)
    17. Mahalingam K., Otsuka N., Melloch M. R., Woodall J. M., Warren A. C. J. Vac. Sci. Technol. B9, 2328-32 (1991)
    18. Liliental-Weber Z., Claverie A., Washburn J., Smith F. N., Calawa A. R. Appl. Phys. A53, 141-46 (1991)
    19. Eaglesham D. J., Pfeiffer L. N., West K. W., Dy Kaar D. R. Appl. Phys. Lett. 58, 65-67 (1991)
    20. Liliental-Weber Z., Swider W., Yu K. M., Kortright J., Smith F. N., Calawa A. R. Appl. Phys. Lett. 58, 2153-55 (1991)
    21. Melloch M. R., Mahalingam K., Otsuka N., Woodall J. M., Warren A. C. J. Cryst. Growth 111, 39-42 (1991)
    22. Zuzanna Liliental-Weber, Greg Cooper, Chris Kocot, J. Vac. Sci. Technol. B9, 2323-2327 (1991)
    23. Alain Claverie and Zuzanna Liliental-Weber, Philosophical Magazine A, 65, 981 (1992)
    24. T. M. Cheng, C. Y. Chang, T. C. Chang, J. H. Huang, and M. F. Huang. Appl. Phys. Lett. 65, 3626 (1994)
    25. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, K. R. Evans Phys. Rev. B. 42, 3578 (1990)
    26. D. C. Look J. Appl. Phys. 70, 3148 (1991)
    27. A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka Appl. Phys. Lett. 57, 1331 (1990)
    28. Attique N., Harmon E. S., Chang J. C. P., Woodall J. M., Melloch M. R. J. Appl. Phys. 77, 1471-76 (1995)
    29. Ibbetson J. P., Speck J. S., Nguyen N. X., Gossard A. C., Mishra U. K. J. Electron. Mater. 22, 1421-24 (1993)
    30. Rossi D. V., Fossum E. R., Pettit G. D., Kirchner P. D., Woodall J. M. J. Vac. Sci. Technol. B5, 982-84 (1987)
    31. F. W. Smith, A. R. Calawa, C. L. Cen, M. J. Manfra, and L. J. Mahoney, IEEE Electron Device Lett. 9, 77 (1998)
    32. M. J. Delany, C. S. Chou, L. E. Larson, J. F. Jensen, D. S. Deaki, A. S. Brown, W. W. Hooper, M. A. Thompson, L. G. McCray, S. E. Rosenbaum, IEEE Electron Lett. 10, 355 (1989)
    33. A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum and M. J. Delaneuy, IEEE EDL-10, No.12, 565-567 (1989)
    34. L. W. Yin, Y. Hwang, J. H. Lee, R. M. Kolbas, R. J. Trew, and U. K. Mishra, IEEE Trans. Electron. Devices. 37, 46 (1990)
    35. C. L. Chen, F. W. Smith, B. J. Clifton, L. J. Manfra, F. W. Smith, D. H. Temme, and A. R. Calawa, IEEE Electron Device Lett. 12, 306 (1991)
    36. C. L. Chen, L. J. Mahoney, M. J. Manfra, F. W. Smith, D. H. Temme, and A. R. Calawa, IEEE Electron Device Lett. 13, 335 (1992)
    37. J. M. Chwalek, J. F. Whitaker and G. Mourou, Proceedings of the Conference on “Picosecond Electronics and Optoelectronics”, Salt Lake City, UT, 15-18 (1991)
    38. S. Subramanian, D. Dchulte, L. Ungier, P. Zhao, P. Zhao, T. K. Plant, and J. R. Arthur, IEEE Electron Lett. 16, 20 (1995)
    39. K. Mahalingam, N. Otsuka, M. R. Melloch, J. M. Woodall, and A. C. Warren, J. Vac. Sci. Technol. B10, 812-814 (1992)
    40. T. M. Cheng, A. Chin, C. Y. Chang, M. G. Huang, K. Y. Hsieh, J. H. Huang. Appl. Phys. Lett. 64, 1546 (1994)
    41. Alain Claverie and Zuzanna Liliental-Weber, Philosophical Magazine A, 65, 981 (1992)
    42. Z. A. Su, J. H. Huang, L. Z. Hsieh, and W. I. Lee, Appl. Phys. Lett. 72, 1984 (1998)
    43. Z. A. Su, J. H. Huang, and W. I. Lee, J. Cryst. Growth, 187, 559 (1998)
    44. W. Ostwald, Z. phys. Chem. 37, 385 (1901)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE