簡易檢索 / 詳目顯示

研究生: 林勇志
Lin, Yung-Chih
論文名稱: Irreducible Cuspidal Characters of Finite Unitary Groups and Theta Correspondence
有限酉群的不可約尖點特徵函數和Theta對應
指導教授: 潘戍衍
Pan, Shu-Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 27
中文關鍵詞: Theta 對應尖點特徵函數
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文裡,我們有興趣的是有限Unitary 群的不可約尖點群表現的
    Theta 對應。首先要知道有限酉群哪些是unipotent 不可約尖點群表現,必須使用Lusztig 方法來判斷,然後我們使用酉群共軛類的centralizer 來決定有限酉群的不可約群表現哪些是尖點的,之後介紹Induction 法則和Preservation 法則,最後藉由使用Induction 原則和Preservation 法則討論有限酉群的不可約尖點群表現之間的Theta 對應,特別是對於這些有限酉群U0(q),U1(q),U2(q),和U3(q)相互之間Theta對應關係的結果。


    In this paper we mainly discuss the theta corrspondence of irreducible cuspidal characters of finite unitary groups. Firstly, we distinguish irreducible unipotent characters of finite unitary groups by Lusztig's discussion. We use
    the centralizers of semisimple elements of finite unitary groups to know which irreducible characters of finite unitary groups are cuspidal. Then we introduce the induction principle and preservation principle. Finally, we clarify the theta correspondence between unitary groups by the induction principle and preservation principle, especially for U0(q), U1(q), U2(q), and U3(q).

    Contents 1 Introduction . . . . . . . . . . . . . . . . . .2 1.1 Linear Representations of Finite Groups . . . . 2 1.2 Symmetric and Skew-Symmetric Bilinear Forms and Hermitian Forms . . . . . . . . . . . . . . . . . . 4 1.3 The Classical Finite Groups of Lie Type Un . . 5 2 Definition of Theta Correspondence . . . . . . . .7 2.1 Weil Representation of Spn . . . . . . . . . . .7 2.2 Theta Correspondence . .. . . . . . . . . . . . 8 3 Induction Principle and Preservation Principle . 11 3.1 Witt Towers . . . . . . . . . . . . . . . . . 11 3.2 Induction Principle . . . . . . . . . . . . .. 12 3.3 Preservation Principle . . . . . . . . . . . . 12 4 The Chain of Irreducible Cuspidal representations of Finite Unitary Groups . . . . . . . . . . . . . . 15 4.1 Introduction . . . . . . . . . . . . . . . . . 15 4.2 The Unitary Group U0(q) . . . . . . . . . . . 16 4.3 The Unitary Group U1(q) . . . . . . . . . . . .16 4.4 The Unitary Group U2(q) . . . . . . . . . . . 17 4.5 The Unitary Group U3(q) . . . . . . . . . . . 20 reference . . . . . . . . . . . . . . . . . . . . .27

    References
    [Car85] R.W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, New York (1985).
    [DM91] F. Digne and J. Michel, Representations of finite groups of Lie type,Cambridge University Press, 1991.
    [Enn63] V. Ennola, On the characters of the finite unitary groups, Ann.Acad. Sci. Fenn. Math. 323 (1963), 3–35.
    [Kaw76] N. Kawanaka, On the irreducible characters of the finite unitary groups, Proc. Japan Acad. 52 (1976), no. 3, 95–97.
    [Kaw77] , On the irreducible characters of the finite unitary groups,J. Math. Soc. Japan 29 (1977), 425–450.
    [Kud86] S.S. Kudla, On the local theta-correspondence, Inventiones mathematicae 83 (1986), no. 2, 229–255.
    [Noz72] S. Nozawa, Characters of the finite general unitary group U(4, q2),Fac. Sci. Univ. Tokyo 19 (1972), 257–293.
    [Noz76] , Characters of the finite general unitary group U(5, q2), Fac.Sci. Univ. Tokyo 23 (1976), 23–74.
    [Pan02] SY Pan, Local theta correspondence of depth zero representations and theta dichotomy, J. Math. Soc. Japan 54 (2002), 793–845.
    [Rob94] Brooks Roberts, Lecture notes, University of Maryland, College Park, 1994.
    [Ser73] J.P. Serre, A course in arithmetic, Springer, 1973.
    [Ser77] , Linear representations of finite groups, Springer Verlag,1977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE