研究生: |
陳俊谷 |
---|---|
論文名稱: |
Chirality Driven Core-Shell Cylinder Microstructure in Chiral Diblock Copolymers |
指導教授: | 何榮銘 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 131 |
中文關鍵詞: | chirality 、chiralr 、core-shell cylinder 、diblock copolymer 、nanostructure |
外文關鍵詞: | chirality, chiral, core-shell cylinder, diblock copolymer, nanostructure |
相關次數: | 點閱:62 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, we aim to examine the chiral effect on self-assembled structures in the bulk by using a diblock copolymer system constituting both achiral and chiral blocks, poly(styrene)-b-poly(L-lactide) (PS-PLLA). In contrast to the specific nanohelical phase in PS-rich PS-PLLA fractions, our results indicated that unique nanostructures were formed in the self-assembly of PLLA-rich PS-PLLA fractions. As evidenced by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), a hexagonally packed core-shell cylinder structure was obtained for PS-PLLA with fPLLAv=0.65. Also, tilting experiments presented identical results. The calculated volume fraction from TEM micrographs was consistent with synthetic characterization, which further confirmed the novel core-shell cylinder structure and suggested that PS component forms the shell of the cylinder morphology whereas PLLA presents as core and matrix. Moreover, PS hollow-tube-like morphology can be observed after hydrolyzing PLLA blocks; the hydrolyzed morphology is in line with suggested core-shell cylinder structure phase. Furthermore, the core-shell cylinder morphology can also be observed in blending system whenever the effective volume fraction of PLLA (i.e., the overall content of PLLA blocks and PLLA homopolymer) is around 0.65. Long-time annealing experiments were performed to ascertain the stability of core-shell cylinder morphology. According to these results, core-shell cylinder morphology remains, and 1D SAXS profile also indicates hexagonally packed lattice. The preserved core-shell cylinder structure after reasonably long-time annealing reflects that the formed core-shell structure appears as a stable phase. The competition between crystallization and phase separation in the self-assembly of PLLA-rich block copolymers was also studied by differential scanning calorimeter, TEM and SAXS. These results all indicate the core-shell cylinder morphology is destroyed as crystallization of PLLA blocks occur. In contrast to the self-assembly of achiral block copolymers, polystyrene-b-poly(racemic lactide) (PS-PLA) and ABC triblock copolymers, the formation of core-shell cylinder phase structure explicitly reflects the significant chiral effect on microphase separation of block copolymers. The calculated results of theory of TCLB indicate that formation of tubular morphology was identified as the most stable morphology, and the tubular structure is indeed transformed from single-strand helices by scrolling. Besides, Nandi and Bagchi also proposed the tubular formation is driven by an intrinsic bending force in addition to twisting due to molecular chirality. In conclusion, on the basis of energetic consideration, we suggest that the observed tube-like core-shell cylinder morphology is the consequence of bending origin to induce the scrolling of helical microdomains; demonstrating a possible way to generate unique phase with helical sense for achiral component by introducing chiral effect for microphase separation.
1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
17. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1477.
18. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
19. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Polym. Mater. Sci. Eng. 1999, 80, 29.
20. Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
21. Discher, B. M; Won, Y,-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
22. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
23. Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643.
24. Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134.
25. Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228.
26. Brunsveld, L.;Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525.
27. Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann I. K.; Harris, F. W.; Chien, L.-C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
28. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
29. Goodby, J. W. et al. Cryst. Liq. Cryst. 1994, 243, 231.
30. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
31. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675.
32. Bai, F.; Chien, L.-C.; Li, C. Y.; Cheng, S. Z. D.; Percheck, R. Chem. Mater. 1999, 11, 1666.
33. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science, 1999, 284, 785.
34. Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
35. Nelson, J. C. et al. Science 1997, 277, 1793.
36. Engelkamp, H.; van Nostrum, C. F.; Picken, S. J.; Nolte, R. J. M. Chem. Commun. 1998, 979.
37. Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
38. Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
39. Bassani, D. M.; Lehn, J.-M.; Baum, G.; Fenske, D.; Angew. Chem. Int. Ed. 1997, 36, 1845.
40. Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1999, 12, 3471.
41. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
42. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105.
43. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Adv. Mater. 2002, 14, 198.
44. Sakurai, S-.I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670.
45. Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
46. Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
47. Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
48. Maeda, K.; Goto, H.; Yashima, E. Macromolecules 2001, 34, 1160.
49. Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184.
50. Morino, K.; Maeda, K.; Okamoto, Y.; Yashima, E.; Sato, T. Chem. Eur. J. 2002, 8, 5112.
51. Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480.
52. Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596.
53. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science, 2001, 293, 676.
54. Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
55. Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
56. Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11.
57. Huang, J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 439.
58. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt- Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080.
59. Krappe, U.; Stadler, R.; Voigt-Martin, I. Macromolecules 1995, 28, 4558.
60. Brandrup, J.; Immergut, E. H.; Eds. Polymer Handbook, 3rd ed.; Wiley: New York, 1989.
61. Auschra, C.; Standler, R.; Macromolecules 1993, 26, 2171.
62. Standler, R.; Auschra, C.; Beakmann, J.; Krappe, U.; Voigt-Martin, I. G.; Leibler, L. Macromolecules 1995, 28, 3080.
63. Helfand, E.; Wassermann, Z. R. Macromolecules 1980, 11, 960.
64. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science, 1998, 280, 1427.
65. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
66. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
67. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
68. David, J. L.; Gido, S. P.; Hong, K.; Zhou, J.; Mays, J. W.; Tan, N. B. Macromolecules 1999, 32, 3216.
69. Riess, G.; Schlienger, M.; Marti, G. J. Macromol. Sci., Phys. 1980, B17, 355.
70. Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Macromol.
Chem. Phys. 1997, 198, 1051.
71. Stadlar, R.; Abetz, V.; Goldacker, T. Macromol. Rapid. Commun. 2000, 21, 16.
72. Mogi, Y.; Nomura, M.; Kotsuji, K.; Matsushita, Y.; Noda, I. Macromolecules 1994, 27, 6755.
73. Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. C. Macromolecules 1993, 26, 2636.
74. Balsamo, V.; Gil, G.; Urbina de Navarro, C.; Hamley, I. W.; von Gyldenfeldt, F.; Abetz, V.; Canizales, E. Macromolecules 2003, 36, 4515.
75. Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. Macromolecules 1999, 32, 1226.
76. Balsamo, V.; Stadler, R. Macromol. Symp. 1997, 117, 153.
77. Bailey, T. S.; Pham, H. D.; Bates, F. S. Macromolecules 2001, 34, 6994.
78. Sugiyama, M.; Shefelbine, T. A.; Vigild, M. E.; Bates, F. S. J. Phys. Chem. B. 2001, 105, 12448.
79. Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S.; Macromolecules 2003, 36, 2873.
80. Birshtein, T. M.; Lyatskaya, Y. V.; Zhulina, E. B. Polymer 1992, 33, 2751.
81. T. Goldacker, V. Abetz, Macromolecules 1999, 32, 5165.
82. Zhong-can, O-Y.; Jixing, L. Phys. Rev. Lett. 1990, 65, 1679.
83. Zhong-can, O-Y.; Jixing, L. Phys. Rev. A 1991, 43, 6826.
84. Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
85. Fuhrhop, J. –H.; Schnieder, P.; Boekema, E.; Helfrich, W. J. Am. Chem. Soc. 1988, 110, 2861.
86. Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091.
87. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313.
88. Hamley, I. W. Soft Matter 2005, 1, 36.
89. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66.
90. Uang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Science 2001, 291, 630.
91. Li, Z.; Liu, G. Langmuir 2003, 19, 10480.
92. Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208.