簡易檢索 / 詳目顯示

研究生: 陳俊谷
論文名稱: Chirality Driven Core-Shell Cylinder Microstructure in Chiral Diblock Copolymers
指導教授: 何榮銘
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 131
中文關鍵詞: chiralitychiralrcore-shell cylinderdiblock copolymernanostructure
外文關鍵詞: chirality, chiral, core-shell cylinder, diblock copolymer, nanostructure
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, we aim to examine the chiral effect on self-assembled structures in the bulk by using a diblock copolymer system constituting both achiral and chiral blocks, poly(styrene)-b-poly(L-lactide) (PS-PLLA). In contrast to the specific nanohelical phase in PS-rich PS-PLLA fractions, our results indicated that unique nanostructures were formed in the self-assembly of PLLA-rich PS-PLLA fractions. As evidenced by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), a hexagonally packed core-shell cylinder structure was obtained for PS-PLLA with fPLLAv=0.65. Also, tilting experiments presented identical results. The calculated volume fraction from TEM micrographs was consistent with synthetic characterization, which further confirmed the novel core-shell cylinder structure and suggested that PS component forms the shell of the cylinder morphology whereas PLLA presents as core and matrix. Moreover, PS hollow-tube-like morphology can be observed after hydrolyzing PLLA blocks; the hydrolyzed morphology is in line with suggested core-shell cylinder structure phase. Furthermore, the core-shell cylinder morphology can also be observed in blending system whenever the effective volume fraction of PLLA (i.e., the overall content of PLLA blocks and PLLA homopolymer) is around 0.65. Long-time annealing experiments were performed to ascertain the stability of core-shell cylinder morphology. According to these results, core-shell cylinder morphology remains, and 1D SAXS profile also indicates hexagonally packed lattice. The preserved core-shell cylinder structure after reasonably long-time annealing reflects that the formed core-shell structure appears as a stable phase. The competition between crystallization and phase separation in the self-assembly of PLLA-rich block copolymers was also studied by differential scanning calorimeter, TEM and SAXS. These results all indicate the core-shell cylinder morphology is destroyed as crystallization of PLLA blocks occur. In contrast to the self-assembly of achiral block copolymers, polystyrene-b-poly(racemic lactide) (PS-PLA) and ABC triblock copolymers, the formation of core-shell cylinder phase structure explicitly reflects the significant chiral effect on microphase separation of block copolymers. The calculated results of theory of TCLB indicate that formation of tubular morphology was identified as the most stable morphology, and the tubular structure is indeed transformed from single-strand helices by scrolling. Besides, Nandi and Bagchi also proposed the tubular formation is driven by an intrinsic bending force in addition to twisting due to molecular chirality. In conclusion, on the basis of energetic consideration, we suggest that the observed tube-like core-shell cylinder morphology is the consequence of bending origin to induce the scrolling of helical microdomains; demonstrating a possible way to generate unique phase with helical sense for achiral component by introducing chiral effect for microphase separation.


    Abstract………………………………………………………………………………..I Contents......................................................................................................................IV List of Tables...……………………………………………………………………....VI List of Figures………………………………………………………………………VII Chapter 1 Introduction……..………………………………….………….…….…….1 1.1 Self-Assembly……………………………………………………………….1 1.2 Self-assembly of Block Copolymers………………………………………...3 1.3 The Origins of Helices……………………………………………………....5 1.4 Chirality.........................................................................................................17 1.5 Core-Shell Cylinder Structure……………………………………………...22 1.6 Theory of Titled Chiral Lipid Bilayers (TCLB)……………………………27 Chapter 2 Objectives…………………………………………………………….…..68 Chapter 3 Experimental Details..................................................................................70 3.1 Instruments....................................................................................................70 3.2 Experimental Section....................................................................................70 3.3 The Principles of Instruments.......................................................................74 3.3.1 Transmission Electron Microscope (TEM)............................................74 3.3.2 Differential Scanning Calorimetry (DSC)............................................. 77 3.3.3 Field-Emission Scanning Electron Microscopy (FESEM).....................80 Chapter 4 Results and Discussions.............................................................................86 4.1 Thermal Properties of PS06PLLA14 (fPLLAv = 0.65).....................................86 4.2 Morphology of PS06PLLA14 (fPLLAv = 0.65)................................................87 4.3 SAXS Analysis of PS06PLLA14 (fPLLAv = 0.65)...........................................90 4.4 Hydrolyzed Characteristic of PLLA..............................................................92 4.5 Blending System……....................................................................................94 4.6 Stability of Core-Shell Cylinder Structure……………………………..…..96 4.7 Crystal Effect……….………………………………………….…………...96 4.8 Proposed Mechanism of Core-Shell Cylinder Structure…………………...97 Chapter 5 Conclusion................................................................................................118 Chapter 6 Future Works…………………………………………………………….120 Chapter 7 References.................................................................................................122 List of Tables Table 1 Molecular characteristics of diblock copolymers and homopolymers..….....82 Table 2 Molecular characteristics of blend samples…………...................................83 Table 3 Volume fraction calculation..………………………………………….…...108 List of Figures Figure 1.1 Examples of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micrometersized metallic polyhedra folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces.....30 Figure 1.2 Examples of dynamic self-assembly. (a) An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; microtubules ~ 24 nm in diameter) are colored red. (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inch Petri dish. (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another via vortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1 mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is ~ 2 mm............................................................................................................31 Figure 1.3 (a) Schematic phase diagram showing the various ‘classical’ BCP morphologies adopted by non-crystalline linear diblock copolymer. The blue component represents the minority phase and the matrix, majority phase surrounds it. (b) Schematic of morphologies for linear ABC triblock copolymer. A combination of block sequence (ABC, ACB, BAC), composition and block molecular weights provides an enormous parameter space for the creation of new morphologies. Microdomains are colored as shown by the copolymer strand at the top, with monomer types A, B and C confined to regions colored blue, red and green, respectively..................................................................................................................32 Figure 1.4 Nature uses the self-assembly of compounds as a tool for structuring substances. Biological architectures are formed by interplay among secondary forces such as steric, hydrophobic, hydrogen-bonding, electrostatic interactions to form different levels of organization, i.e., different length-scales of morphologies............33 Figure 1.5 (a) Average molecular structure and schematic representation of PMPSnPEOm. (b) Micellar fibers of PMPSnPEOm in mixtures of THF and water (25/75 by volume). TEM images (a) visualizing the polysilane core of micellar fibers (unstained, bar represents 250 nm); (b) revealing the PEO shell using uranyl acetate staining, (c) showing an example of the bulges found for many of these fibers. (d) Schematic representation of the structure of the micellar fibers showing the PMPS core and the PEO shell………………………………………………………………34 Figure 1.6 Helical aggregates of PMPSnPEOm found in a water/THF mixture of 90/10 (v/v). (a) TEM image (unstained, bar represents 250 nm) of a right-handed helix and (b) SEM image (uncoated, bar represents 250 nm) of a left-handed helix. (c) Schematic representation of the formation of a superhelix from the coiling of two helical stands...............................................................................................................35 Figure 1.7 (a) Phenylacetylene oligomers 1 to 9 (inset, upper left). Also shown is octadecamer 9 in a representative random coil conformation. (b) Helical conformation of a meta-substituted phenylacetylene octadecamer (n = 18), where R = H and the end groups have been removed..................................................................36 Figure 1.8 (a) The molar extinction coefficient ε (303 nm) versus oligomer length n for oligomers 1 to 9 in chloroform (black) and acetonitrile (red and blue). The lines are linear fits to the data; for acetonitrile, the fits are for n=2 to 8 (red) and n=10 to 18 (blue). (b) Representative UV spectra in acetonitrile: hexamer 3 (red) and dodecamer 6 (blue)......................................................................................................37 Figure 1.9 (a) PET(R*)-9. (b) TEM bright image of the helical lamellar crystal; (c) ED pattern obtained from the circled area in (b). (d) TEM DF image of the helical lamellar crystal from the (201), (205), and (206) diffraction arcs which are circled in the inset ED pattern. The bright bands on the crystal correspond to these three diffractions..................................................................................................................38 Figure 1.10 (a) Enlarged and isolated cross sections I, II, and III in the double-twist model. In each cross section, molecular chains are only locally parallel to the width of the cross section and continuously twist along the short helical axis ns. There are two helical axes (nl and ns) in this model. (b) The predicted ED pattern from cross sections I and III in the double-twist model. Note that the (206) diffraction is an arc. (c) TEM DF image of the helical lamellar crystal from the partial (205) and (206) diffraction arcs denoted by the circled area in the ED pattern inset. Note that the bright bands cover only a portion of the crystal cross section. The cross section inset shows that the chain orientation within the band and the circled area corresponds to the bright band............................................................................................................39 Figure 1.11 Chemical structures of crown ether phthalocyanine (left). Transmission electron micrographs (platinum shadowing) of gels from compound in Fig. 12. (a) Left-handed coiled-coil aggregates in chloroform. (b) Schematic representation of the helices in (a). (c) Nonhelical rods formed in chloroform in the presence of KCl. (d) Schematic representation of the rods in (c).................................................................40 Figure 1.12 (a) Chemical structures of compound 1 and 2. (b) Schematic tentative representations of a self-assembled helical stack of compound 2 (left) and a fiber composed of two coiled-coil selfassembled stacks of compound 2 (right). (c), (d) Freeze-fracture electron micrographs of compound 2 in c) dichloromethane and d) pyridine showing fiber network formation with helical textures (scale bar represents 100 nm)……………………………………………………………………………...41 Figure 1.13 (a) DRC. (b) Bright-field TEM micrograph of unstained DRC nanoribbons formed in dichloromethane. (c) Bright-field TEM micrographs of DRC nanoribbons formed in EMA. The inset shows schematic representations of twisted (left) and coiled (right) helical morphologies.............................................................42 Figure 1.14 (a) TEM micrographs of CdS precipitated in gels of the DRC in EHMA. Helical nanostructure of CdS with a pitch of 40 ± 50 nm. (b) Schematic representation of a possible templating mechanism in which a coiled CdS helix is produced from a twisted helical template through growth along one face of the template. The resulting yellow mineral (shown at an early stage of growth so as not to obscure ribbon) would have a pitch twice that of the ribbon template (blue)........43 Figure 1.15 (a) Structures of poly-1, and (R)-NapExpanded. (b) AFM phase image of the poly-1H-(R)-Nap complex. A single molecule (a), a toroidal structure (b), and helical structures (c) can be seen.................................................................................44 Figure 1.16 (a) Isocyanopeptides. (b) β-helical polymers from isocyanopeptides.45 Figure 1.17 (a) Three possible structures of SBM. a) helical structure. b) B cylinders parallel to the A cylinder. c) B rings surrounding the A cylinder. (b) TEM images that PB phase forms cylinders which surround the PS cylinders as helices...............46 Figure 1.18 If an object is rotated around an axis and the resulting orientation is not superimposable on its mirror image, the object is said to dissymmetric or optical activity. In the case of molecule, the molecule is referred to a chiral entity...............47 Figure 1.19 Deprotection of the block copolymers. (a) PS-b-PIAA to negatively charged superamphiphiles and (b) PS-b-PIAH to zwitterionic superamphiphiles......48 Figure 1.20 Aggregates formed from poly(styrene)-poly(isocyanide) block copolymers at optimized pH. (a) TEM image of PS40-b-PIAA20 in a pH 5.6 sodium acetate buffer (0.2 mM). (b) Schematic model of the micellar rods, showing the relative positions of the poly(styrene) (blue) and poly(isocyanide) blocks (red) in the aggregates. (c) AFM image of PS40-b-PIAA20 in a pH 5.6 sodium acetate buffer (0.2 mM). (d) Aggregates visulized with TEM from PS40-b-PIAH20 in a sodium citrate buffer of pH 5.6 (0.2 mM)...............................................................................49 Figure 1.21 TEM images of morphologies formed by PS40-b-PIAA10 in a sodium acetate buffer of pH 5.6 (0.2 mM). (a) Collapsed vesicles. (b) Bilayer filaments. (c) Left-handed superhelix. (d) Schematic representation of the helix in (c). (e) Right-handed helical aggregate formed by PS40-b-PIAH15 in a sodium acetate buffer of pH 5.6 (0.2mM)...........................................................................................50 Figure 1.22 Schematic drawing of four different levels of chirality in copolymers..51 Figure 1.23 Molecular structure of poly(styrene)-b-poly(L-lactide) (PS-PLLA)......52 Figure 1.24 A variety of self-assembling nanostructures, including (a) spherical (fPLLAv = 0.14), (b) hexagonally packed cylindrical (fPLLAv = 0.29), (c) and lamellar structures (fPLLAv = 0.61)..............................................................................................53 Figure 1.25 (a) TEM micrograph of PS280PLLA127 (fPLLAv = 0.35). (b) Schematic representation of nanohelical morphology..................................................................54 Figure 1.26 (a) 3D TEM micrograph. (b) 2D SAXS diffraction pattern along the direction of helical axes. (c) 1D SAXS profile for PS280PLLA127 (fPLLAv=0.35) solution-cast sample....................................................................................................55 Figure 1.27 (a) Molecular structure of PS-PCHD. (b) PS-PCHD cast from toluene with scattering vector ratios of reflections as indicated: Annealed sample experimental SAXS. (c) TEM micrographs of PS-PCHD cast from toluene and annealed……………………………………………………………………………..56 Figure 1.28 Typical examples of electron micrographs for four types of morphologiesof microphase-separated structures of ISP triblock copolymers: (a) spherical structure (ISP-25); (b) cylindrical structure (ISP-19); (c and d) OTDD structure (ISP-3); (e) lamellar structure (ISP-4)……………………………….……57 Figure 1.29 (a) Axial TEM projection of hexagonally packed structural units. The darkest regions correspond to the Os0,-stained PI domains, while the gray regions are CH3Istained P2VP domains. The non-CMC interface between this PI microdomain and the PS matrix phase has a hexagonal shape with corners. (b) Transverse TEM projection. The light, gray, and dark regions correspond to projections through the PS matrix, the P2VP core, and the PI annulus, respectively……………………………58 Figure 1.30 TEM images of S57B27C16 after thermal treatments (a) TT2 and (b) TT4. (c) Schematic representation of the core-shell cylinders in the cic morphology for S57B27C16…………………………………………………………………………….59 Figure 1.31 (a) Phase diagram summarizing the morphological behavior of the PS-PI-PEO triblock copolymer system between the symmetric AB and ABC compositional states. (b) SAXS data (100oC) and TEM micrograph generated from triblock F. Data are representative of the hexagonally packed core-shell cylinder region (CSC) depicted in (a). Spacing ratios consistent with a hexagonal arrangement have been assigned to reflections in the scattering data……………………………..60 Figure 1.32 (a) Mixture of C-forming diblock copolymers AB1 and AB2 (q is the fraction of diblock copolymer AB2). (b) Possible structures in a mixture of block copolymers AB1 and AB2……………………………………………………………61 Figure 1.33 Scheme of molecular mixing in a blend of microphase-separated ABC and BC block copolymers……………………………………….…………………..62 Figure 1.34 (a) TEM micrograph of core-shell cylinders in a blend of 50% S33B34M33 153 with 50% B53M4794 (OsO4 , scale bar: 250 nm). (b) TEM micrograph of core-shell cylinders in a blend of 50 wt.-% S33B34T33160 and 50 wt.-% S69B3171 (OsO4 , scale bar: 250 nm)……………………………………………………………………………...63 Figure 1.35 Schematic illustration of the transition sequence from the vesicle to helical structure. The arrows represent the local tilt direction………………………64 Figure 1.36 Dark-field optical micrographs of aqucous dispersion of 2C12-L-Glu-C11N+. Micrographs (a)-(d) show the growth from fibrous chiral bilayers to helical superstructures. Aging condition: (a) 20oC, several hours; (b) 15-20oC, 1 day; (c) 5-6h after b; (d) 15-20oC, 1 month. Scale bar, 10μm . The left part shows schematic illustrations of the growing process of a helix. (a), (b), and (c) are illustrations approximately corresponding to left figure, part b, c, and d, respectively………………………………………………………………………….65 Figure 1.37 (a) Electron micrographs of fiber aggregates of glucinamide: (a) from water and (b) from xylene (Pt/C shadowing). (b) Twisting a or rolling up (b and c) of planar bilayer sheets around corners c or edges (a and b) to yield helices, tubes, or cigarlike scrolls……………………………………………………………………...66 Figure 1.38 (a) Transmission electron micrograph of a tubule with adsorbed Pd/Ni catalyst particles on the surface. (b) Schematic views of the striped patterns in the tilt direction in two limiting cases: (a) the limit of low curvature. qr >> 1. (b) the limit of extreme curvature, qr << 1…………………………………………………………..67 Figure 3.1 PS-PLLA double-headed polymerization sequences………………...….81 Figure 3.2 (a) Schematic of a differential thermal analysis experiment (DTA). (b) Peltier cooling.………………………………………………………………………84 Figure 3.3 Similar fracture surfaces of a polymer blend were imaged at 5 kV accelerating voltage with a lanthanum hexaboride (LaB6) gun (a) and with an FE gun (b)................................................................................................................................85 Figure 4.1 DSC heating thermograms of PS06PLLA14 (fPLLAv=0.65). (a) Tg, Tp and Tm of PLLA were clearly identified in Figure 4.1a. (b) Tg,PS was determined as 78oC (Figure 4.1b).The heating rate was 10oC/min...........................................................102 Figure 4.2 DSC thermograms of (a) isothermal crystallization; (b) melting curves for PS06PLLA14 (fPLLAv=0.65) at different crystallization temperatures. On the basis of the reciprocal time of exothermic peak, the maximum crystallization rate was estimated at ca. 100oC……………………………………………………………...103 Figure 4.3 One-dimensional WAXD profile of PS06PLLA14 (fPLLAv=0.65) after heating to 175oC to eliminate the disturbance of PLLA crystallization on formed morphology………………………………………………………………………...104 Figure 4.4 TEM micrographs of PS06PLLA14, cast from CH2Cl2 and erased thermal history: (a) Projection down the cylinder axis. (b) Projection perpendicular to the cylinder axis………………………………………………………………………..105 Figure 4.5 TEM micrographs of PS06PLLA14 (fPLLAv=0.65) viewing at tilting angles of (a) 0o; (b) 20o; (c) 30o. Tilting experiments also confirmed the observed morphology; consistent results were achieved……………………………………..106 Figure 4.6 One-dimensional SAXS profile of PS06PLLA14 (fPLLAv = 0.65)……...107 Figure 4.7 TEM micrograph of hydrolyzed core-shell cylinder structure of PS06PLLA14 (fPLLAv = 0.65)……………………………………………………….109 Figure 4.8 DSC analysis of blending system……………………………………...110 Figure 4.9 (a) TEM micrographs and (b) 1D SAXS profile of blend01 (fPLLAv = 0.65)………………………………………………………………………………..111 Figure 4.10 TEM micrographs of (a) blend02 (fPLLAv = 0.70), (b) blend03 (fPLLAv = 0.75)………………………………………………………………………………..112 Figure 4.11 1D SAXS profiles and corresponding d100 spacing calculation of blending system…………………………………………………………………….113 Figure 4.12 (a) TEM micrograph; (b) SAXS profile of PS06-PLLA14 (fPLLAv=0.65) after annealing at 140oC for 3hr……………………………………………………114 Figure 4.13 (a) TEM micrograph; (b) SAXS profile of PS06-PLLA14 (fPLLAv=0.65) after PLLA crystallization at 90oC from melt……………………………………...115 Figure 4.14 Schematic illustration of (a) transition sequence from the vesicle to tube structure, and (b) bending and twisting force resulted from chiral effect on self-assembly……………………………………………………………………….116 Figure 4.15 The illustration of PLLA helix in PS-rich fractions of PS-PLLA and of PS helix in PLLA-rich fractions. On the basis of energetic consideration, the single-strand helices are converted to core-shell cylinder by scrolling……………117

    1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
    8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    9. Lodge, T. P. Macromol Chem Phys 2003, 204, 265.
    10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1477.
    18. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
    19. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Polym. Mater. Sci. Eng. 1999, 80, 29.
    20. Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
    21. Discher, B. M; Won, Y,-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
    22. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
    23. Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643.
    24. Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134.
    25. Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228.
    26. Brunsveld, L.;Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525.
    27. Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann I. K.; Harris, F. W.; Chien, L.-C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
    28. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    29. Goodby, J. W. et al. Cryst. Liq. Cryst. 1994, 243, 231.
    30. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
    31. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675.
    32. Bai, F.; Chien, L.-C.; Li, C. Y.; Cheng, S. Z. D.; Percheck, R. Chem. Mater. 1999, 11, 1666.
    33. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science, 1999, 284, 785.
    34. Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
    35. Nelson, J. C. et al. Science 1997, 277, 1793.
    36. Engelkamp, H.; van Nostrum, C. F.; Picken, S. J.; Nolte, R. J. M. Chem. Commun. 1998, 979.
    37. Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
    38. Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
    39. Bassani, D. M.; Lehn, J.-M.; Baum, G.; Fenske, D.; Angew. Chem. Int. Ed. 1997, 36, 1845.
    40. Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1999, 12, 3471.
    41. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
    42. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105.
    43. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Adv. Mater. 2002, 14, 198.
    44. Sakurai, S-.I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670.
    45. Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
    46. Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
    47. Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
    48. Maeda, K.; Goto, H.; Yashima, E. Macromolecules 2001, 34, 1160.
    49. Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184.
    50. Morino, K.; Maeda, K.; Okamoto, Y.; Yashima, E.; Sato, T. Chem. Eur. J. 2002, 8, 5112.
    51. Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480.
    52. Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596.
    53. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science, 2001, 293, 676.
    54. Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
    55. Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
    56. Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11.
    57. Huang, J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 439.
    58. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt- Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080.
    59. Krappe, U.; Stadler, R.; Voigt-Martin, I. Macromolecules 1995, 28, 4558.
    60. Brandrup, J.; Immergut, E. H.; Eds. Polymer Handbook, 3rd ed.; Wiley: New York, 1989.
    61. Auschra, C.; Standler, R.; Macromolecules 1993, 26, 2171.
    62. Standler, R.; Auschra, C.; Beakmann, J.; Krappe, U.; Voigt-Martin, I. G.; Leibler, L. Macromolecules 1995, 28, 3080.
    63. Helfand, E.; Wassermann, Z. R. Macromolecules 1980, 11, 960.
    64. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science, 1998, 280, 1427.
    65. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    66. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    67. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    68. David, J. L.; Gido, S. P.; Hong, K.; Zhou, J.; Mays, J. W.; Tan, N. B. Macromolecules 1999, 32, 3216.
    69. Riess, G.; Schlienger, M.; Marti, G. J. Macromol. Sci., Phys. 1980, B17, 355.
    70. Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Macromol.
    Chem. Phys. 1997, 198, 1051.
    71. Stadlar, R.; Abetz, V.; Goldacker, T. Macromol. Rapid. Commun. 2000, 21, 16.
    72. Mogi, Y.; Nomura, M.; Kotsuji, K.; Matsushita, Y.; Noda, I. Macromolecules 1994, 27, 6755.
    73. Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. C. Macromolecules 1993, 26, 2636.
    74. Balsamo, V.; Gil, G.; Urbina de Navarro, C.; Hamley, I. W.; von Gyldenfeldt, F.; Abetz, V.; Canizales, E. Macromolecules 2003, 36, 4515.
    75. Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. Macromolecules 1999, 32, 1226.
    76. Balsamo, V.; Stadler, R. Macromol. Symp. 1997, 117, 153.
    77. Bailey, T. S.; Pham, H. D.; Bates, F. S. Macromolecules 2001, 34, 6994.
    78. Sugiyama, M.; Shefelbine, T. A.; Vigild, M. E.; Bates, F. S. J. Phys. Chem. B. 2001, 105, 12448.
    79. Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S.; Macromolecules 2003, 36, 2873.
    80. Birshtein, T. M.; Lyatskaya, Y. V.; Zhulina, E. B. Polymer 1992, 33, 2751.
    81. T. Goldacker, V. Abetz, Macromolecules 1999, 32, 5165.
    82. Zhong-can, O-Y.; Jixing, L. Phys. Rev. Lett. 1990, 65, 1679.
    83. Zhong-can, O-Y.; Jixing, L. Phys. Rev. A 1991, 43, 6826.
    84. Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
    85. Fuhrhop, J. –H.; Schnieder, P.; Boekema, E.; Helfrich, W. J. Am. Chem. Soc. 1988, 110, 2861.
    86. Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71, 4091.
    87. Cartier, L.; Okihara, T.; Lotz, B. Macromolecules 1997, 30, 6313.
    88. Hamley, I. W. Soft Matter 2005, 1, 36.
    89. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66.
    90. Uang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Science 2001, 291, 630.
    91. Li, Z.; Liu, G. Langmuir 2003, 19, 10480.
    92. Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE