研究生: |
李 薰 Lee, Hsun |
---|---|
論文名稱: |
以可濕式製成電洞傳輸芴基分子製作高效率有機發光二極體 Solution Processable Fluorene-Based Hole Transporting Materials for High-Efficiency OLEDs |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
王欽戊
Wang, Ching-Wu 岑尚仁 Chen, Sun-Zen 薛景中 Shyue, Jing-Jong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 有機發光二極體 、電洞傳輸層 |
外文關鍵詞: | Organic light emitting diode, Hole transporting layer |
相關次數: | 點閱:114 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體(Organic Light Emitting Diode, OLED)近年來被廣泛應用在顯示器與照明產品上,憑藉著其高對比、高顯色、廣視角、面光源、自發光、省電、可撓曲等優異特性,成為當今最受矚目的新興技術;不過,高製作成本是OLED產業之致命傷,為了實現低成本之大面積連續滾印,開發出相關濕式製程與材料就顯得十分重要;然而,濕式製程的元件,其效率表現普遍較差,為求解決,可藉由添加電洞傳輸層以提升元件的效率,能使濕式製程往商業化的目標向前邁進一步
本研究使用一系列新穎芴基分子之電洞傳輸材料製作濕式黃光OLED,其中以10-Hexyl-3-[2,7-di(9-ethylcarbazolyl-3-yl)fluoren-9-ylmethylene]phenothiazine (DM-260)製成的元件表現最為優異,相較於業界廣為使用之電洞傳輸材料N, N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB),在亮度為100 cd/m2時,其能量效率由17.3 lm/W提升至26.8 lm/W,提升幅度為55 %;電流效率由20.6 cd/A提升至34.6 cd/A,提升幅度為68 %;外部量子效率由6.5 % 提升至11.4 %,提升幅度為75 %;效率的提升可歸因於DM-260電洞傳輸材料具有: (1) 較深的最高填滿分子軌域,使電洞注入層與電洞傳輸層間的能障提升,因而調製過多的電洞注入,使電子電洞數量達成平衡;(2) 較佳的的電洞傳輸能力,使得電洞更有效地注入到發光層中,進而提升元件效率。
Organic light emitting diodes (OLEDs) have been extensively applied to displays and lighting products in recent years. They showed some promising characteristics such as high contrast, high color rendering, wide viewing angle, surface light source, self-luminous, energy saving, flexible. However, the high production cost is the fatal weak point of the OLED industry. To achieve cost-effective, large-area size, and roll-to-roll fabrication, development of solution-process manufacturing is hence crucial. However, wet-processed OLED device generally exhibit efficiency much lower than their dry-processed counterparts. To solve this problem, a hole transmission layer can be added to improve the efficiency of the device and break through a major difficulty in the commercialization of the wet process.
We demonstrate here a series of novel fluorene-based molecular hole transport materials to fabricate wet yellow OLED. Among them, the components made of 10-Hexyl-3- [2,7-di (9-ethylcarbazolyl-3-yl) fluoren-9-ylmethylene] phenothiazine ( DM-260) perform best. Compared with N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB), a hole transmission material widely used in the industry, the power efficiency is increased from 17.3 lm/W to 26.8 lm/W at 100 cd/m2, with an increment of 55 %. Besides, the current efficiency is increased from 20.6 cd/A to 34.6 cd/A, with an increment of 68 %, and the external quantum efficiency is increased from 6.5 % to 11.4 %, with an increment of 75 %. The enhancement of efficiency can be attributed to the fact that DM-260 has (1) the highest occupied molecular orbital deeper than NPB, therefore, the energy barrier between the hole injection layer and the hole transport layer is increased, so excessive hole injection is modulated to balance the number of electron holes, (2) better hole transmission capability enables holes injecting into the emissive layer more effectively, thereby improving device efficiency.
1. O. Prache, Displays, 2001, 22, 49-56.
2. J. Y. Lee, J. H. Kwon, H. K. Chung, Organic Electronics, 2003, 4, 143-148.
3. F. So, J. Kido, P. Burrows, MRS Bulletin, 2008, 33, 663-669.
4. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, K. Lee, Advanced
Materials, 2002, 14, 1275-1279.
5. J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Applied Physics Letters,
2004, 85, 3450-3452.
6. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Applied Physics Letters, 1998, 73, 729
731.
7. G. F. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck,
Applied Physics Letters, 2004, 85, 3911-3913.
8. K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, T. W.
Lee, Advanced Functional Materials, 2010, 20, 1797-1802.
9. M. Gross, D. C. Muller, H. G. Nothofer, U. Scherf, D. Neher, C. Brauchle, K.
Meerholz, Nature, 2000, 405, 661-665.
10. M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, J. Blochwitz
Nimoth, Organic Electronics, 2003, 4, 89-103.
11. J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, J. A. G. Williams, Advanced
Materials, 2007, 19, 4000-4005.
12. J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu,
W. B. Wang, Y. C. Tsai, C. P. Wang, J. J. Shyue, Advanced Functional Materials,
2008, 18, 121-126.
13. J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M. Lai, S. Z. Chen, P.
H. Wu, C. C. Chen, C. P. Liu, S. M. Shen, ACS Nano, 2010, 4, 4054-4060.
14. D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido, Chemistry Letters, 2007, 36,
262-263.
15. W. Y. Hung, Z. W. Chen, H. W. You, F. C. Fan, H. F. Chen, K. T. Wong, Organic
Electronics, 2011, 12, 575-581.
16. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Y. Liu, Applied Physics
Letters, 2002, 80, 139-141.
17. J. H. Jou, P. H. Wu, C. H. Lin, M. H. Wu, Y. C. Chou, H. C. Wang, S. M. Shen,
Journal of Materials Chemistry, 2010, 20, 8464-8466.
18. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O.
Molt, E. Fuchs, C. Lennartz, J. Kido, Advanced Materials, 2010, 22, 5003-5007.
19. J. H. Jou, S. H. Chen, S. M. Shen, Y. C. Jou, C. H. Lin, S. H. Peng, S. P. Hsia, C. W. Wang, C. C. Chen, C. C. Wang, Journal of Materials Chemistry, 2011, 21, 17850
17854.
20. J. H. Jou, P. W. Chen, Y. L. Chen, Y. C. Jou, J. R. Tseng, R. Z. Wu, C. Y. Hsieh, Y.
C. Hsieh, P. Joers, S. H. Chen, Y. S. Wang, F. C. Tung, C. C. Chen, C. C. Wang,
Organic Electronics, 2013, 14, 47-54.
21. J. H. Jou, J. R. Tseng, K. Y. Tseng, W. B. Wang, Y. C. Jou, S. M. Shen, Y. L. Chen,
W. Y. Hung, S. Z. Chen, T. Y. Ding, H. C. Wang, Organic Electronics, 2012, 13,
2893-2897.
22. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang,
C. L. Lai, C. Chang, Applied Physics Letters, 2008, 92, 223504.
23. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Japanese Journal of Applied Physics Part
2-Letters, 1988, 27, L713-L715.
24. J. Kido, M. Kimura, K. Nagai, Science, 1995, 267, 1332-1334.
25. C. H. Chien, F. M. Hsu, C. F. Shu, Y. Chi, Organic Electronics, 2009, 10, 871-876.
26. C. H. Wu, P. I. Shih, C. F. Shu, Y. Chi, Applied Physics Letters, 2008, 92, 233303.
27. J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li, R. S. Liu,
Organic Electronics, 2007, 8, 29-36.
28. J. H. Jou, M. H. Wu, C. P. Wang, Y. S. Chiu, P. H. Chiang, H. C. Hu, R. Y. Wang,
Organic Electronics, 2007, 8, 735-742.
29. W. C. H. Choy, K. N. Hui, H. H. Fong, Y. J. Liang, P. C. Chui, Thin Solid Films,
2006, 509, 193-196.
30. J.H. Jou, M.C. Sun, H.H. Chou, C.H. Li, Applied Physics Letters, 2005, 87, 043508.
31. J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, Advanced
Functional Materials, 2006, 16, 575–581.
32. M. Pope, P. Magnante, H. P. Kallmann, Journal of Chemical Physics, 1963, 38,
2042-2043.
33. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 94,
171-183.
34. R. Partridge, Polymer, 1983, 24, 733-738.
35. C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 1987, 51, 913-915.
36. C. W. Tang, S. A. Vanslyke, C. H. Chen, Journal of Applied Physics, 1989, 65, 3610
3616.
37. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.
Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539-541.
38. A. Dodabalapur, Solid State Communications, 1997, 102, 259-267.
39. A. Jablonski, Nature, 1933, 131, 839-840.
40. J. Kido, T. Matsumoto, Applied Physics Letters, 1998, 73(20), 2866-2868.
41. L. G. Thompson, S. E. Webber, Journal of Physical Chemistry, 1972, 76, 221.
42. T. Förster, Ann. Physik, 437, 1948, 55-75.
43. L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
44. M. Klessonger and J. Michl, “Excited Stated and Photochemistry of Organic
Molecules”, VCH Publishers, New York, 1995.
45. C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry, 1986
46. J. Jwo-Huei, OLED Introduction. 2015
47. J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang, C. T.
Chen, Journal of Materials Chemistry, 2011, 21(34), 12613-12618.
48. J. Yang and J. Shen, J. Appl. Phys., 1998, 84, 2105-2111
49. Z. Liu, J. Pinto, J. Soares and E. Pereira, Synthetic Met., 2001, 122, 177-179
50. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, J. Appl. Phys., 1999, 86, 1688-1692
51. K. Sugiyama, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys., 2000, 87, 295-298
52. S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160-2162
53. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S.
Thurm, Synthetic Met., 2000, 111, 139-143
54. J. Shi, C. W. Tang and C. H. Chen, US. Patent, No. 5646948 (1997)
55. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida,
IEEE T. Electron Dev., 1997, 44, 1245-1248
56. C. Ganzorig, K. Suga and M. Fujihira, Mat. Sci. Eng. B-Solid, 2001, 85, 140-143
57. C. Ganzorig, M. Fujihira, Applied physics letters, 2004, 85(20), 4774-4776.
58. T. Brown, R. Friend, I. Millard, D. Lacey, T. Butler, J. Burroughes and F. Cacialli,
J. Appl. Phys., 2003, 93, 6159-6172
59. C. Adachi, T. Tsutsui, S. Saito, Applied Physics Letters, 1989, 55, 1489-1491.
60. S. C. Tse, K. C. Kwok, S. K. So, Applied Physics Letters, 2006, 89, 262102.
61. S. Van Slyke, C. Chen, C. Tang, Applied Physics Letters, 1996, 69, 2160.
62. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, K. Shibata, Chemistry Letters,
1993, 22, 905-906.
63. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S.
Kawami, K. Imai, Applied Physics Letters, 1994, 65, 807.
64. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Applied Physics Letters, 2001,
79, 156.
65. Y. Shirota, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto,
H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Journal of Luminescence, 1997, 72
74, 985.
66. J. Salbeck, N. Yu, J. Bauer, F. Weissortel, H. Bestgen, Synthetic Metals, 1997, 91,
209.
67. J. Li , D. Liu , Y. Li, C. S. Lee , H. L. Kwong, S. Lee, Chemistry of Materials, 2005, 17, 1208-1212.
68. S. Kumar, S. Sahoo, R. Griniene, D. Volyniuk, J. Grazulevicius, J. H. Jou, Journal
of Materials Chemistry C, 2017, 5(38), 9854-9864.