簡易檢索 / 詳目顯示

研究生: 黃賀隆
Heh Lung Huang
論文名稱: 1.鎢金屬應用於天然物與雜環化合物的合成 2.有機發光二極體材料-有機和有機銥金屬材料的合成與探討
1. Synthesis of the Heterocyclic Natural Products and the Skeletons: Application of Organotungsten Chemistry.2. Synthesis and Characterization of the Novel Organic Light-Emitting Diode (OLED) Materials.
指導教授: 劉瑞雄
Rai Shung Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 332
中文關鍵詞:
外文關鍵詞: tungsten, Diels-Alder, OLED
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含三個章節,前兩章是有關於利用鎢乙炔基錯合物,在路易士酸的催化下,進行環化反應。第三章是有關有機發光二極體 (OLEDs) 材料的開發與合成。
    在第一章中,我們建立了一個短又簡單的合成方法,來合成雙環生物鹼之類的天然物。我們利用具有N-acyliminium離子的鎢乙炔基錯合物,在路易士酸 (BF3.OEt2) 的催化下,進行分子內環化反應,然後再進行脫金屬和還原反應得到(±)-lupinine、(±)-epilupinine和(±)-laburnine。用相同的想法和合成方法,我們建立了合成一些不同環大小之雙環內醯類化合物的合成方法。

    在第二章中,我們開發了一個有效率的合成方法來合成具有掌性的三環□喃和□喃架構的衍生物。我們利用具有掌性dioxalane輔助基的鎢乙炔醇錯合物,在路易士酸 (BF3.OEt2) 的催化下,和乙醛進行環化反應,然後再進行脫金屬反應得到具有掌性□喃和□喃架構的環外共軛雙烯。我們在利用這具掌性的環外共軛雙烯進行非對稱性的Diels-Alder反應,得到高立體選擇性的環化結構,最後再脫去dioxalane輔助基,得到具有掌性的三環□喃和□喃架構的衍生物。

    在第三章中,我們合成了一些有機發光二極體 (OLEDs) 材料,包括有機藍色的的螢光材料和銥金屬錯合物橘色、紅色的燐光材料。有機藍色的的螢光材料具有容易製備、熱穩定性高和亮度高的特性。銥金屬錯合物橘色、紅色的燐光材料也是容易製備的。


    The dissertation discusses several new tungsten- and iridium-mediated reactions and their applications. This dissertation has three chapters. The first two chapters elucidate tungsten-mediated cyclizations and the third chapter addresses the synthesis of organic materials used as light-emitting diodes (OLEDs).
    The first chapter establishes a short and easy route for synthesizing naturally occurring bicyclic alkaloids-(±)-lupinine, (±)-epilupinine, and (±)-laburnine, via the intramolecular cyclization of alkynyltungsten compounds with N-acyliminium ions. Using this method, a common synthetic route for constructing the bicyclic lactam derivatives is determined.

    The second chapter establishes a short and effective route for synthesizing chiral tricyclic furanyl and pyranyl derivatives via tungsten-mediated cycloalkenation. The chiral endocyclic dienes are synthesized using the chiral dioxolane group as a chiral auxiliary and they further undergo diastereoselective Diels-Alder reactions to produce tricyclic furanyl and pyranyl cycloadducts. The chiral dioxolane substituents of the cycloadducts were degraded to cause these molecules to have common furanyl and pyranyl rings.

    In the third chapter, some OLED materials, including fluorescent and phosphorescent materials, are synthesized. The organic blue emissive fluorescent materials are characterized by the ease of their preparation, thermal stability and high brightness. The orange to red emissive organo-iridium complex as a phosphorescent material is easily prepared and has moderate luminance.

    CHAPTER I: Synthesis of Pyrrolizidine and Quinolizidine Derivatives via Intramolecular Cyclization of Alkynyltungsten Compounds with N-Acyliminium Ion 1. INTRODUCTION 2. THE LITERATURE REVIEWS TO CONSTRUCT THE BICYCLIC PYRROLIZIDINE AND QUINOLIZIDINE SKELETONS FOR (±)-LUPININE, (±)-EPILUPININE, AND (±)-LABURNINE 3. SYNTHETIC APPROACHES OF (±)-EPILUPININE, (±)- LUPININE, AND (±)-LABURNINE 3-1. The properties of the N-acyliminium ions 3-2. The cyclization via tungsten-mediated approach 3-3. Retrosynthetic approaches of (±)-lupinine, (±)- epilupinine, and (±)-laburnine 4. RESULTS AND DISCUSSION 4-1. Synthesis of (±)-lupinine and (±)-epilupinine 4-2. Synthesis of (±)-laburnine 4-3. Extended cyclization reactions to a general route to synthesize the bicyclic lactams 4-4. 1H NMR, NOE data of compound 63 4-5. Plausible mechanisms for cyclization and demetalation 5. CONCLUSIONS 6. REFERENCES 7. EXPERIMENTAL SECTIONS CHAPTER II: A Facile Synthesis of Enantiopure Tricyclic Furanyl and Pyranyl Derivatives via Tungsten-Mediated Cycloalkenation and Diels-Alder Reaction 1. INTRODUCTION 2. DIELS-ALDER REACTION 2-1. The regioselectivity of the Diels-Alder reaction 2-2. The stereoselectivity of Diels-Alder reactions— endo addition 2-3. The effects of the bulky substitutions in Diels-Alder reactions 2-4. Asymmetric Diels-Alder reactions 3. REVIEW LITERATURES OF THE DIFFERENT SYNTHESIS METHODOLOGIES FOR TRICYCLIC FURANYL OR PYRANYL DERIVATIVES 4. SYNTHETIC APPROACHES TO TRICYCLIC FURANYL AND PYRANYL DERIVATIVES 4-1. The diastereoselective asymmetric Diels-Alder reaction 4-2. The cyclization via tungsten-mediated approach 5. RESULTS AND DISCUSSION 5-1. Synthesis of the chiral alkynol compound 105 5-2. Synthesis of chiral furanyl diene 108 via metalation, cyclization, and demetalation 5-3. Synthesis of the chiral alkynyl compound 112 5-4. Synthesis of chiral pyranyl diene 115 via metalation, cyclization, and demetalation 5-5. Diastereoselective Diels-Alder reactions 5-6. 1H NMR NOE data of compound 116 5-7. 1H NMR NOE data of compound 121 5-8. Degradation of the chiral dioxolane group 5-9. Plausible mechanisms for cyclization and demetalation 6. CONCLUSIONS 7. REFERENCES 8. EXPERIMENTAL SECTIONS CHAPTER III: The Synthesis of Organic Blue Emission and Iridium Orange Red Emission OLED Materials 1. INTRODUCTION 2. THEORY OF FLUORESCENCE 3. ORGANIC BLUE EMISSIVE FLUORESCENT OLED MATERIALS 4. RESULTS AND DISCUSSION OF ORGANIC BLUE EMISSIVE FLUORESCENT OLED MATERIALS 4-1. Synthesis for the spiro-(cyclopentane-1,1’-indene) tri-substituted amine 142 4-2. The UV absorption data and PL emitting spectrum of the trisubstituted spiro-(cyclopentane-1,1’-indene) amine 142 4-3. The device for the spiro-(cyclopentane-1,1’-indene) trisubstituted amine 142 4-4. Synthesis for the spiro-(cyclohexane-1,1’-indene) tri-substituted amine 147 4-5. The UV absorption data and PL emitting spectrum for the trisubstituted spiro-(cyclohexane-1,1’-indene) amine 147 4-6. The device for the trisubstituted spiro-(cyclohexane- 1,1’-indene) amine 147 5. CONCLUSIONS OF ORGANIC BLUE EMISSIVE FLUORESCENT OLED MATERIALS 6. IRIDIUM COMPLEX ORANGE-RED EMISSIVE PHOSPHORESCENT OLED MATERIALS 7. RESULTS AND DISCUSSION OF IRIDIUM COMPLEX ORANGE-RED EMISSIVE PHOSPHORESCENT OLED MATERIALS 7-1. Synthesis of the red Ir-5-(4’-fluorophenyl)-3,4-benzoquinoline- acac complex 151 7-2. The UV absorption spectrum and PL emitting spectrum of compound 151 7-3. Device of the red Ir-5-(4’-fluorophenyl)-3,4-benzoquinoline- acac complex 151: 7-4. Synthesis of the red Ir-5-(3’,5’-difluorophenyl)-3,4- benzoquinoline-acac complex 155 7-5. The UV absorption spectrum and PL emitting spectrum of compound 155 7-6. Device of the Ir-5-(3’,5’-difluorophenyl)-3,4-benzoquinoline -acac complex 155 7-7. Synthesis of the red Ir-5-phenyl-3,4-benzoquinoline benzyl-acac complex 159 7-8. The UV absorption spectrum and PL emitting spectrum of compound 159 7-10. The UV absorption spectrum and PL emitting spectrum of compound 164 8. REFERENCES 9. EXPERIMENTAL SECTIONS

    Chapter I
    1. Hesse, M. Alkaloids Chemistry; Wiley: New York, 1981.
    2. Pelletier, S. W. Alkaloids Chemical and Biological Perspectives; Pergamon: New York, 1983; Vol. 1.
    3. Manske, R. H. F. The alkaloids; 1970; Vol. XII.
    4. Crout, D. H. G.; Grundon, M. F. The alkaloids; Chemistry Society of London: London, 1976; Vol. 6.
    5. Southon, I. W.; Buckingham, J. Dictionary of Alkaloids; Capman and Hall: New York, 1989; H-00309.
    6. Southon, I. W.; Buckingham, J. Dictionary of Alkaloids; Capman and Hall: New York, 1989; L-00160.
    7. Southon, I. W.; Buckingham, J. Dictionary of Alkaloids; Capman and Hall: New York, 1989; E-00071.
    8. Hiemstra, H.; Sno, M. H. A. M.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1985, 50, 4014.
    9. Hua, D. H.; Miao, S. W.; Bravo, A. A.; Takemoto, D. J. Synthesis 1991, 970.
    10. Morley, C.; Knight, D. W.; Share, A. C. J. Chem. Soc., Perkin Trans. 1 1994, 2903.
    11. Arai, Y.; Kontani, T.; Koizumi, T. J. Chem. Soc., Perkin Trans.1 1994, 15.
    12. David, O.; Blot, J.; Bellec, C.; Fargeau-Bellassoued, M.; Haviari, G.; Celerier, J.; Lhomment, G.; Gramain, J.; Gradette, D. J. Org. Chem. 1999, 64, 3122.
    13. Volkmann, R. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Schreiber, S. L., Ed.; Pergamon Press: Oxford, 1991; Vol. 1, p 355.
    14. Hiemstra, H.; Speckamp, W. N. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 1047.
    15. Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311.
    16. Liang, K.-W.; Li, W.-T.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. J. Am. Chem. Soc. 1997, 119, 4404.
    17. (a) Liang, K.-W.; Chandrasekharam, M.; Li, C.-L.; Liu, R.-S. J. Org. Chem. 1998, 63, 7289. (b) Li. W.-T.; Pan, M-H.; Wu, Y.-R.; Wang, S.-L.; Liao, F.-L.; Liu, R.-S. J. Org. Chem. 2000, 65, 6362. (c) Chen, M.-J.; Lo, C.-Y.; Liu, R.-S. Synlett 2000, 1300. (d) Li, C.-L.; Liu, R.-S. Chem. Rev. 2000, 100, 3127.
    18. Gresson, J. P.; Jacquesy, J. C.; Rambaud, D. Bull. Chim. Soc. Fr. 1992, 129, 227.
    19. Bure, M. I.; Humphrey, M. G.; Matison, J. G.; Roy, S. K.; Swincer, G. A. Aust. J. Chem. 1984, 37, 1955.
    20. Villemin, D.; Schigeko, K.; Tanabe, K.; Shinei, R.; Okonogi, T. Tetrahedron Lett. 1997, 38, 1439.
    21. (a) Clem, G. R.; Morgan, W. M.; Raper, R. J. Chem. Soc. 1937, 965. (b) Wenkert, E.; Dave, K. G.; Stevens, R. V. J. Am. Chem. Soc. 1968, 90, 6177. (c) Okita, M.; Wakamatsu, T.; Ban, Y. Heterocycles 1983, 20, 401. (d) Bremmer, M. L.; Khatri, N. A.; Weinreb, S. M. J Org. Chem. 1983, 48, 3661.
    22. (a) Van Tamelen, E. E.; Foltz, R. L. J. Am. Chem. Soc. 1969, 91, 7372. (b) Iwashita, T.; Kusumi, T.; Kakiswa, H. J. Org. Chem. 1982, 47, 230. (c) Wenkert, E.; Dave, K. G.; Stevens, R. V. J. Am. Chem. Soc. 1968, 90, 6177.
    23. (a) Nagao, Y.; Dai, W.-M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E. J. Org. Chem. 1990, 55, 1148. (b) Rueger, H.; Benn, M. Heterocycles 1982, 19, 1677. (c) Rueger, H.; Benn, M. Heterocycles 1983, 20, 235. (d) Robins, D. J.; Sakdarat, S. J. Chem. Soc., Chem. Commun. 1979, 1181.
    Chapter II
    1. Paquette, L. A.; Oplinger, J. A. Tetrahedron 1989, 45, 107.
    2. (a) Flegel, M.; Adam, K.-L.; Becker, H. Phytochemistry 1999, 52, 1633. (b) Finnegan, R. A.; Djerassi, C. J. Am. Chem. Soc. 1960, 82, 4342. (c) Carda, M.; Marco, J. A. Tetrahedron 1992, 48, 9789. (d) Ohloff, G.; Vial, C.; Wolf, H. R.; Job, K.; Jejou, E.; Polonsky, J.; Lederer, E. Helv. Chim. Acta. 1980, 63, 205. (e) Hijfte, L. V.; Vandewalle, M. Tetrahedron 1984, 40, 4371.
    3. Diels, O. P. H.; Alder, K. Ann. 1928, 460, 98.
    4. (a) Carruthers, W. Cycloaddation Reactions in Organic Stnthesis; Pergamon Press: Oxford, 1990; Vol. 8. (b) Fringuelli, F.; Taticchi, A. Diene in the Diels-Alder Reaction; Wiley: New York, 1990.
    5. Sauer, J. Angew. Chem., Int. Ed. Engl. 1967, 6, 16.
    6. Koroler, A.; Mur, V. Dokl. Abad Nauk SSSK Ser Khim. 1984, 59, 251; Chem. Abstr. 1984, 3, 6776.
    7. Jnoff, E.; Ghosez, L. J. Am. Chem. Soc. 1999, 121, 2617.
    8. Kobayashi, S.; Kusakabe, K.; Komiyama, S.; Ishitani, H J. Org. Chem. 1999, 64, 4220.
    9. White, J. D.; Choi, Y. Org. Lett. 2000, 2, 2373.
    10. Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124, 3808.
    11. Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908.
    12. Oppolzer, W.; Chapuis, C.; Guo, M.; Reichin, D.; Godel, T. Tetrahedron Lett. 1982, 23, 4781.
    13. Oppolzer, W. Tetrahedron 1987, 43, 1969.
    14. Fisher, M. J.; Hehre, W. J.; Kahn, S. D.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 4625.
    15. Chemler S. R.; Iserlih, U.; Danishefsky, S. J. Org. Lett. 2001, 3, 2949.
    16. Kuethe, J. T.; Brooks, C. A.; Comins, D. L. Org. Lett. 2003, 5, 321.
    17. Arrayas, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185.
    18. Backvall, J.-E.; Anderson, P. G. J. Am. Chem. Soc. 1992, 114, 6374.
    19. Itami, K.; Palmgren, A.; Backvall, J.-E. Tetrahedron Lett. 1998, 39, 1223.
    20. Backvall, J.-E.; Anderson, P. G.; Stone, G. B.; Gogoll, A. J. Org. Chem. 1991, 56, 2988.
    21. Pei, C. C.; Liu, R. S. Org. Lett. 2001, 3, 1295.
    22. Liang, K. -W.; Li, W.-T.; Lee, G.-H.; Peng, S. -M.; Liu, R.-S. J. Am. Chem. Soc. 1997, 119, 4404.
    23. Li, W.-T.; Lai, F. -C.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. . J. Am. Chem. Soc. 1998, 120, 4520.
    24. Wu, W.-L.; Yao. Z.-J.; Li, J. C.; Xia, Y.; Wu, Y.-L. J. Org. Chem. 1995, 60, 3257.
    25. (a) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828. (b) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748. (c) Leitereg, T. J.; Cram, D. J. J. Am. Chem. Soc. 1968, 90, 4019.
    26. (a) Ashby, E. C.; Laemmle, J. T. Chem. Rev. 1975, 75, 521. (b) Goller, E. J. J. Chem. Educ. 1974, 51, 182.
    27. Smith, A. B.; Leahy, J. W.; Noda, I.; Remiszewski, S. W.; Liverton, N. J.; Zibuck, R. J. Am. Chem. Soc. 1992, 114, 2995.
    28. (a) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35. 448. (b) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispimo, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H.; Morikawa, K.; Wang, Z.; Xu, D.; Zhang, X. J. Org. Chem. 1992, 57, 2786. (c) Crispimo, G. A.; Jeong, K. S.; Kolb, H. C.; Wang, Z.; Xu, D.; Sharpless, K. B. J. Org. Chem. 1993, 58, 3785.
    29. (a) Brown, F. K.; Houk, K. N. Tetrahedron Lett. 1985, 26, 2297 (b) Wu, T. C.; Houk, K. N. Tetrahedron Lett. 1985, 26, 2293. (c) Rousch, W. R.; Essenfeld, A. P.; Warmus, J. S. Tetrahedron Lett. 1987, 28, 2447.
    30. (a) Ichihara, A.; Miki, M.; Tazaki, H.; Sakamura, S. Tetrahedron Lett. 1987, 28. 1175. (b) Burke, S. D.; Piscopio, A. D.; Buchana, J. L. Tetrahedron Lett. 1988, 29, 2757. (c) Marshall, J. A.; Audia, J. E.; Crote, J. J. Am. Chem. Soc. 1988, 110, 1290.
    31. Cambie, R. C.; Hayard, R. C.; Roberts, J. L.; Rutledge, P. S. J. Chem. Soc., Perkin Trans. 1 1974, 1858.
    32. Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99.
    33. Landesberg, J. M.; Katz, L.; Olsen, C. J. Org. Chem. 1972, 37, 930.
    34. Sanders, J. K.; Hunter, B. K. In Modern NMR Spectroscopy; 2nd ed.; Oxford University Press: Oxford, 1993.
    Chapter III
    1. Tang, C. W.; VanSlkye, S. A. Appl. Phys. Lett. 1987, 27, 713.
    2. Tang, C. W.; VanSlkye, S. A.; Chen, C. H. J. Appl. Phys.1989, 65, 3610.
    3. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jap. J. Appl. Phys. 1988, 27, 2, L269.
    4. Willard, H. H.; Merritt, L. L.; Dean, J. W. Instrumental Methods of Analysis; D. Van Nostrand: New York, 1974.
    5. Skoog, D. A.; West, D. M. Principles of Instrumental Analysis; Holt, Rinehart & Winston: New York, 1971.
    6. March, J. Advanced Organic Chemistry:/reaction, mechanism, and structure; Wiley: New York, 1985.
    7. Helfrish, W. and Schneider, W. G. J. Chem. Phys. 1966, 44, 2902.
    8. Vincett, P. S., Barlow, W. A., Robert, G. G., and Hann, R. A. Thin Solid Films 1982, 94,171.
    9. Chishio, H.; Tadashi, K. EP 0,319,881 (1989)
    10. Tokailin, H.; Higashi, H.; Hosokawa, C. US 5,130,603 (1992)
    11. Tokailin, H.; Higashi, H.; Hosokawa, C. US 6,093,864 (2000)
    12. Hanack, M.; Behnisch, B. Synthetic Metals 2001, 121, 1661.
    13. Stock, L. M.; Young, P. E. J. Am. Chem.Soc. 1972, 94, 4247.
    14. Sha, C. K.; Huang, S. J.; and Zhan, Z. P. J. Org. Chem. 2002, 67, 831.
    15. Wong, L. S. M.; Sharp, L. A.; Xavier, N. M. C.; Turner, P.; Sherburn, M. S. Org. Lett. 2002, 4, 1955.
    16. Kim , D. U.; Paik, S. H.; Kim, S. H.; Tsutsui, T. Synthetic Metals 2001, 123, 43.
    17. VanSlyke, S. A.; Tang, C. W. US 4, 539, 507 (1985)
    18. Kido, J.; Hayase, H.; Kongawa, K.; Hagai, K.; Okamoto, K. Appl. Phys. Lett. 1994, 65, 2124.
    19. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
    20. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750.
    21. Adachi, C. M.; Baldo, A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622.
    22. Kessar, S. V.; Gopal, R.; Singh, M. Tetrahedron 1973, 29, 167.
    23. Kotha, S.; Lahiri, K.; Sreenivasachary, N. Synthesis 2001, 13, 1932.
    24. Colombo, M. G. A.; Hauser, A.; Gudel, H. U. Inorg. Chem. 1993, 32, 3088.
    25. Schimid, B.; Garces, F. O.; Watts, R. J. Inorg. Chem. 1994, 33, 9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE