簡易檢索 / 詳目顯示

研究生: 胡宇康
Hu, Yu-Kang
論文名稱: 多點感測的最佳用水量自動澆灌方法
An Automatic Multiple-Sensing Irrigation Method for Optimal Water Usage
指導教授: 蔡仁松
Tsay, Ren-Song
口試委員: 黃稚存
Huang, Chih-Tsun
李哲榮
Lee, Che-Rung
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 26
中文關鍵詞: 多點感測最佳用水量自動澆灌方法
外文關鍵詞: Multiple-Sensing, drip irrigation, Optimal Water Usage
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一種自動化澆水方式最佳化地匹配植物吸水行為,藉由多重感測點布建於根部周圍區域與根部底下區域。澆灌的水滴速度是被最佳化的,藉由維持一個平衡狀態的目標,基於植物根系底部的水分流失流速數值與根系周圍土壤濕度數值。此方法獨特的優點是我們的方法能夠應用在不同種類的植物與能夠根據天氣狀況調整。


    We propose an automatic irrigation method that optimally matches to crop water uptake by multiple-sensing in the root zone and the root bottom areas. The irrigation discharge rate is optimized by maintaining a balance state of the target soil based on the root bottom drainage flow value and root zone water content value. The unique advantage of our approach is that our solution is applicable to all types of crops and is adaptive to all weather conditions.

    ABSTRACT 3 Contents 4 List of Figures 5 I. Introduction 6 II. Methodology 10 A. Balance state 10 B. Self-adaptive Method 16 III. Evaluation 21 IV. Conclusion 23 References 24

    [1] J. Elliott, D. Deryng, C. Müller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Flörke, Y. Wada, N. Best, S. Eisner, B. Fekete, C. Folberth, I. Foster, S. Gosling, I. Haddeland, N. Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A. Ruane, Y. Satoh, E. Schmid, T. Stacke, Q. Tang and D. Wisser, "Constraints and potentials of future irrigation water availability on agricultural production under climate change", Proceedings of the National Academy of Sciences, vol. 111, no. 9, pp. 3239-3244, 2013.
    [2] "How do we prevent today's water crisis becoming tomorrow's catastrophe?", World Economic Forum, 2018. [Online]. Available: https://www.weforum.org/agenda/2017/03/building-freshwater-resilience-to-anticipate-and-address-water-crises/. [Accessed: 03- Jun- 2018].
    [3] N. Sonia, "NPR Choice page", Npr.org, 2018. [Online]. Available: https://www.npr.org/sections/thesalt/2018/01/09/573521139/after-devastating-cyclone-fiji-farmers-plant-for-a-changed-climate. [Accessed: 02- Jun- 2018].
    [4] "Agriculture holds the key to tackling water scarcity", The Water Blog, 2018.[Online].Available: http://blogs.worldbank.org/water/agriculture-holds-key-tackling-water-scarcity. [Accessed: 03- Jun- 2018].
    [5] FAO. The future of food and agriculture – Trends and challenges.
    [6] "Water scarcity", En.wikipedia.org, 2018. [Online]. Available: https://en.wikipedia.org/wiki/Water_scarcity. [Accessed: 02- Jun- 2018].
    [7] AQUASTAT,http://www.fao.org/nr/water/aquastat/main/index.stm
    [8] Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    [9] R. D. JACKSON Canopy Temperatureasa Crop Water Stress Indicator
    [10] Review of Precision Irrigation Technologies and their Application
    [11] “Tule - Frequently Asked Questions.” [Online]. Available: https://www.tuletechnologies.com/tule-faq. [Accessed: 05-Jun-2018].
    [12] T. Foster et al., “AquaCrop-OS: An open source version of FAO’s crop water productivity model,” Agricultural Water Management, vol. 181, pp. 18–22, Feb. 2017.
    [13] P. Steduto, T. C. Hsiao, D. Raes, and E. Fereres, “AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles,” Agronomy Journal, vol. 101, no. 3, p. 426, 2009.
    [14] D. Raes, P. Steduto, T. C. Hsiao, and E. Fereres, “AquaCropThe FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description,” Agronomy Journal, vol. 101, no. 3, p. 438, 2009.
    [15] T. C. Hsiao, L. Heng, P. Steduto, B. Rojas-Lara, D. Raes, and E. Fereres, “AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize,” Agronomy Journal, vol. 101, no. 3, p. 448, 2009.
    [16] “Review of precision irrigation technologies and their application.” [Online].Available:http://www.insidecotton.com/xmlui/bitstream/handle/1/1995/npsi610-precision-irrigation-final-report.pdf?sequence=3&isAllowed=y. [Accessed: 18-Jul-2017].
    [17] M. B. Kirkham, “Chapter 10 - Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range,” in Principles of Soil and Plant Water Relations (Second Edition), Boston: Academic Press, 2014, pp. 153–170.
    [18] Q. Zuo, F. Jie, R. Zhang, and L. Meng, “A Generalized Function of Wheat’s Root Length Density Distributions,” VADOSE ZONE J., vol. 3, p. 7, 2004.
    [19] T. H. Skaggs, T. J. Trout, and Y. Rothfuss, “Drip Irrigation Water Distribution Patterns: Effects of Emitter Rate, Pulsing, and Antecedent Water,” Soil Science Society of America Journal, vol. 74, no. 6, p. 1886, 2010.
    [20] S. Assouline, “The Effects of Microdrip and Conventional Drip Irrigation on Water Distribution and Uptake,” Soil Science Society of America Journal, vol. 66, no. 5, p. 1630, 2002.
    [21] “EC-5 | Soil Moisture Sensor | METER Environment,” METER. .
    [22] “SPEI Global Drought Monitor.” [Online]. Available: http://spei.csic.es/map/maps.html#months=2#month=11#year=2017. [Accessed: 06-Feb-2018]
    [23] Food and Agriculture Organization, The future of food and agriculture: trends and challenges. 2017.
    [24] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56,” p. 15, 1998.
    [25] A. Walter et al., “ASCE’s standardized reference evapotranspiration equation,” in Watershed management and operations management 2000, 2000, pp. 1–11.
    [26] S. L. Davis and M. D. Dukes, “Irrigation scheduling performance by evapotranspiration-based controllers,” Agricultural Water Management, vol. 98, no. 1, pp. 19–28, Dec. 2010.
    [27] I. Kisekka, K. W. Migliaccio, M. D. Dukes, J. H. Crane, and B. Schaffer, “Evapotranspiration-Based Irrigation for Agriculture: Implementing Evapotranspiration-Based Irrigation Scheduling for Agriculture,” p. 4.
    [28] N. Katerji and G. Rana, “FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region,” Theoretical and Applied Climatology, vol. 116, no. 3–4, pp. 515–536, May 2014.
    [29] S. Whitaker, “Flow in porous media I: A theoretical derivation of Darcy’s law,” Transport in Porous Media, vol. 1, no. 1, pp. 3–25, 1986.

    QR CODE