簡易檢索 / 詳目顯示

研究生: 江仁詳
Jiang, Ren-Siang
論文名稱: 以ZrTiOx為介電層並利用相消效應實現高效能MIM電容
指導教授: 巫勇賢
口試委員: 吳永俊
鄭淳護
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: ZrTiOx介電層MIM電容BaZryTi1-yO3介電層
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第一個實驗(第三章)我們將介紹以ZrLaOx/ZrTiOx/ZrLaOx堆疊介電層作為金屬-絕緣層-金屬(Metal-Insulator-Metal, MIM)電容其中的ZrTiOx介電層經氮電漿處理60秒,跟未經氮電漿處理的ZrLaOx/ZrTiOx/ZrLaOx當作介電層的電容比較,這個MIM的電容密度稍微減少到14.38 fF/μm2以及VCC-α稍微劣化至68 ppm/V2,但仍然符合ITRS 2024的需求。不過,經過氮電漿處理後的漏電因子大幅度改善為32.8。此外,經加壓產生的漏電(SILC)在電壓為2.5伏特1000秒的條件下為0.16以及頻率幾乎不隨電容密度而改變。更重要的是,在相同的加壓條件下,有很好的電容變化可靠度在10年操作後為0.38%。

    在第二個實驗(第四章),我們將介紹以鈣鈦礦為基底部分結晶的材料BaZryTi1-yO3 (y=0.6),發現這材料的κ值高達48.6以及有正的VCC-α值。堆疊BaZryTi1-yO3以及ZrTiOx當作介電層,這個MIM電容經由相消效應可達到極低的VCC-α值為14 ppm/V2以及電容密度值13.4 fF/μm2,很低的介電消散角度(loss tangent)低於0.01,很低的漏電流值7.5X10-9 A/cm2在-1V的條件下。固定電壓2.5伏持續1000秒,劣化的漏電流大小少於30%被量測到。此外,有極好電容變化可靠度在10年操作後為0.89%


    摘要.i 致謝.iii 總目錄.iv 圖目錄.Vii 表目錄.xi 第一章 序論...................................................1 1-1 背景介紹............................................1 1-2 MIM電容的結構與特性..................................3 1-3 MIM電容的應用.......................................4 1-4 研究動機............................................5 1-5 論文結構............................................6 第二章 MIM電容的電性量測與結構原理.........................11 2-1 電容的電性量測.....................................11 2-1-1 電壓電容係數(VCC)與溫度電容係數(TCC)...............11 2-1-2 漏電流、漏電機制與SILC............................15 2-1-3 頻散現象(dispersion)............................17 2-1-4 可靠度分析(reliability)..........................18 2-1-5 消耗角度(Loss Tagnent)..........................19 2-2 MIM電容的結構以及原理...............................20 2-2-1 MIM電容堆疊方式..................................20 2-2-2 相消效應(cancelling effect)......................22 2-2-3 結論............................................23 第三章 ZrLaOx/ZrTiOx/ZrTiOx堆疊介電層經氮電漿處理後的電性與可靠度....................................................36 3-1 實驗動機...........................................36 3-2 ZrLaOx/ZrTiOx/ZrTiOx堆疊介電層氮電漿處理製造過程.......37 3-3 電容電壓(C-V)特性柱狀圖..............................42 3-4 電流對電壓(I-V)特性曲線..............................43 3-5 漏電流機制..........................................44 3-6 溫度電容係數(temperature coefficient of capacitance,TCC)..................................................45 3-7 SILC(stress induced leakage current)..............45 3-8 頻散現象(dispersion)...............................46 3-9 可靠度分析(reliability).............................47 3-10 結論..............................................48 第四章 單層BaZryTi1-yO3以及ZrTiOx/ BaZryTi1-yO3堆疊介電層經氮爐管處理後的電性與良好的可度..................................56 4-1 實驗動機............................................56 4-2 BaZryTi1-yO3的材料特性..............................57 4-3 單層BaZryTi1-yO3為介電層的電容的製造過程...............58 4-4 單層BaZryTi1-yO3為介電層的電容VCC-α對電容密度做圖.......62 4-5 ZrTiOx/ BaZryTi1-yO3堆疊的電容製造過程................62 4-6 單層BaZryTi1-yO3與ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容C-V曲線.....................................................67 4-7 單層BaZryTi1-yO3與ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容的消散角度....................................................67 4-8 ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容的漏電流...........68 4-9 ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容漏電機制...........68 4-10 ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容的SILC...........69 4-11 ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容的頻散現象.........69 4-12 ZrTiOx/ BaZryTi1-yO3堆疊為介電層電容的十年可靠度曲線....70 4-13 結論...............................................71 參考文獻.................................................80

    [1.1] “International technology roadmap for semiconductors”, ITRS, 2011 edition.
    [1.2] M. Yoshida, T. Kumauchi, K. Kawakita, N. Ohashi, H. Enomoto, T. Umezawa, N.Yamamoto, I. Asano, and Y. Tadaki, “Low temperature metal-based cell integration technology for gigabit and embedded DRAMs”, in IEEE IEDM Tech. Dig., 2007, p.41.
    [1.3] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 1997, p.191.
    [1.4] T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose , K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwa, “High performance MIM capacitor for RF BiCMOS/CMOS LSls”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 1999, p.133.
    [1.5] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang and A. Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits”, IEEE Interconnect Technology International Conference, 1999, p.245.
    [1.6] H.S.P. Wong, “Beyond the conventional transistor”,IBM J . Res. Develop., vol.46,2002, p.133.
    [1.7] S. Kim, B. Cho, M. Li, S. Ding, C. Zhu, M. Yu, B. Narayanan, A. Chin, and D. Kwong, “Improvement of voltage linearity in high-κ MIM capacitors using HfO2-SiO2 stacked dielectric”, IEEE Electron Device Letters, vol.25, 2004, p.538.
    [1.8] X. Yu, C. Zhu, H. Hu, A. Chin, M. Li, B. Cho, D. Kwong, P. Foo, and M. Yu,“A high-density MIM capacitor (13 fF/μm2) using ALD HfO2 dielectrics”, IEEE Electron Device Letters, vol.24, 2003, p.63.
    [1.9] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, A. Chin, “High density and low leakage current in TiO2 MIM capacitors processed at 300oC”, IEEE Electron Device Letters, vol.29, 2008, p.845.
    [1.10] J. J. Yang, J. D. Chen, R. Wise, P. Steinmann, M. B. Yu, D. L. Kwong, M. F. Li, Y. C. Yeo, and C. Zhu,“Effective modulation of quadratic voltage coefficient of capacitance in MIM capacitors using Sm2O3/SiO2 dielectric stack”, IEEE Electron Device Letters, vol.30, 2009, p.460.
    [1.11] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, C. Zhu, Y. C. Yeo,“Physical and electrical characterization of metal–insulator–metal capacitors with Sm2O3 and Sm2O3/SiO2 laminated dielectrics for analog circuit applications”, IEEE Electron Device Letters, vol.56, 2009, p.2683.
    [1.12] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, ”High-capacitance Cu/Ta2O5/Cu MIM tructure for SoC applications featuring a single-mask add-on process”, in IEEE IEDM Tech. Dig.,2002, p.940.
    [1.13] S. Kim, B. Cho, M. Yu, M. Li, Y. Xiong, C. Zhu, A. Chin, and D. Kwong, ”High capacitance density (>17 fF/μm2) Nb2O5-based MIM capacitors for future RF IC applications”, in VLSI Symp. Tech. Dig., 2005, p.56.
    [1.14] D. Brassard, D. Sarkar, M. El Khakani, and L. Ouellet, “Compositional effect on the dielectric properties of high-κ titanium silicate thin films deposited by means of a cosputtering process”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.24, 2006, p.600.
    [1.15] K. Chiang, C. Huang, A. Chin, W. Chen, S.McAlister, H. Chiu, J. Chen, and C. Chi,“High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications”, IEEE Electron Device Letters, vol.26, 2005, p.504.
    [1.16] Y. H. Wu, C. C. Lin, L. L. Chen, B. Y. Chen, M. L. Wu, and J. R. Wu, “Impact of top electrode on electrical stress reliability of metal-insulator-metal capacitor with a amorphous ZrTiO4 film,” Appled Physics Letters, vol.96, 2010, p.133501.
    [1.17] L. L. Chen, Y. H. Wu, Y. B. Lin, C. C. Lin, and M. L. Wu,“ZrLaOx/ZrTiOx/ZrLaOxLaminate as Insulatorfor MIM Capacitors With High CapacitanceDensity and Low Quadratic Voltage Coefficient Using Canceling Effect”, IEEE Electron Device Letters, vol.33, 2012, p.1447.

    [1.18] C. Huang, K. Chiang, H. Kao, A. Chin, and W. Chen, “RF IC TaN/SrTiO3/TaN MIM capacitors with 35 fF/μm2 capacitance density”, IEEE Microwave and Wireless Components Letters, vol. 16, 2006, p. 493.
    [1.19] K. Chiang, C. Huang, G. Chen, W. Chen, H. Kao, Y. Wu, A. Chin, and S. McAlister, ”High-performance SrTiO3 MIM capacitors for analog applications”, IEEE Transactions on Electron Devices, vol. 53, 2006, p.2312.
    [1.20] G. Lupina, G. Kozlowski, P. Dudek, J. Dabrowski, Ch. Wenger, G. Lippert, and H. J. Müssig, “Dielectric characteristics of amorphous and crystalline BaHfO3 high-k layers on TiN for memory capacitor applications”, IHP, Im Technologiepark, 2008, p.159.
    [1.21] M. Yoshino, Y. Liu, K. Tatsumi, I. Tanaka, M. Morinaga, and H. Adachi, “Energetics of hydrogen states in SrZrO3”, materials Transactions, vol. 43, 2002, p.1444.
    [1.22] A. Kerschaand D. Fischer, “Phase stability and dielectric constant of ABO3 sssssperovskites from first principles”, Journal Applied Physics , vol. 106, 2009, sssssp.014105.
    [1.23] G. Łupina, J. Dąbrowski,P. Dudek,G. Kozłowski,P. Zaumseil,G. Lippert,O. sssssFursenko,J. Bauer,C. Baristiran,I. Costina,H. J. Müssig,L. Oberbeck andU. Schröder, sssss“Dielectric constant and leakage of BaZrO3 film”, Appled Physics Letters, sssssvol. 94, 2009, p.152903.
    [1.24] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee,“Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, 2003, p.2026.
    [1.25] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, “Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices”, Chemical Vapor Deposition, vol. 14, 2008, p.123.
    [1.26] C. Perkins, B. Triplett, P. McIntyre, K. Saraswat, S. Haukka, and M. Tuominen,“Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition”, Applied Physics Letters, vol. 78, 2001, p.2357.
    [1.27] E. Lipp, Z. Shahar, B. C. Bittel, P. M. Lenahan, D. Schwendt, H. J. Osten, and M. Eizenberg,“Trap-assisted conduction in Pt-gated Gd2O3/Si capacitors”, Applied Physics Letters, vol. 109, 2011, p.073724.
    [1.28] T. Iida, M. Nakahara, S. Gotoh, and H. Akibah, ”Precise capacitor structure suitable for submicron mixed analog/digital ASICs”, IEEE 1990 Custom Integrated Circuits Conference, 1990, p.13.
    [1.29] S. J. Kim, “High-κmetal-insulator-metal (MIM) capacitors for RF/mixed-signal IC applications”, National University of Singapore, degree of doctor, 2005.
    [1.30] S. J.Kim, B. J. Cho, M. F. Li, S. J. Ding, C. Zhu, M. B. Yu,B. Narayanan,A. Chin,“Improvement of voltage linearity in High-K MIM capacitors using HfO2–SiO2 stacked dielectric”, IEEE Electron Device Letters, vol.25, 2004, p.538.

    [2.1] K. S. Tan, S. Kiriaki, M. De Wit, J. W. Fattaruso, C. Y. Tsay, W. E. Matthews, and R. K. Hester, “Error correction techniques for High-Performance differential A/Dconverters”, IEEE J. Solid-State Circuits, vol.25, 1990, p.1318.
    [2.2] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Letters, vol. 23, 2002, p.514.
    [2.3] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal–insulator–metal capacitors using PECVD nitride dielectrics”, IEEE Electron Device Letters, vol. 22, 2001, p.230.
    [2.4] H. Hu, C. Zhu, Y. Lu, Y. Wu, T. Liew, M. Li, B. Cho, W. Choi, and N. Yakovlev,“Physical and electrical characterization of HfO2 metal–insulator–metal capacitors for Si analog circuit applications”, Journal of Applied Physics, vol. 94, 2003, p.551.
    [2.5] P. Gonon and C. Valle, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors”, Applied Physics Letters, vol. 90, 2007, p.142906.
    [2.6] J. Macdonald, “Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes”, Physical Review, vol. 92, 1953, p.4.
    [2.7] J. Beaumont and P. Jacobs, “Polarization in potassium chloride crystals”, J. Phys. Chem. Solids, vol. 28, 1967, p.657.
    [2.8] S. Mitoff and R. Charles, “Electrode polarization of ionic conductors”, Journal of Applied Physics, vol. 43, 1972, p.927.
    [2.9] Takeda, T. Ishikawa, T. Mine, T. Imai, and T. Fujiwara, “Characterization and modeling of voltage and temperature dependence of capacitance in Al2O3-laminated Ta2O5 Metal–Insulator–Metal capacitor”, Japanese Journal of Applied Physics, vol. 46, 2007, p.2973.
    [2.10] J. Rovertson, “Band structures and band offsets of high K dielectrics on Si”, Applied Surface Science, 190, 2002, p.2.
    [2.11] M. N. JONES, “Leakage current behavior of reactive rf sputtered HfO2 thin films”, University of Florida, 2003.
    [2.12] J. I. Han,W. K. Kim, S. J. Hong and S. K. Park, “Effects of Post annealing on Current-Voltage Characteristics of Metal-Insulator(Ta2O5)-Metal Type Thin-Film Diodes”, Journal of the Korean Physical Society,Vol. 39, 2001, p.686.
    [2.13] C. W. Chen,T. C. Chang, P. T. Liu, T. M. Tsai, H. C. Huang, J. M. Chen, C. H. Tseng, C. C. Liu, T. Y. Tseng, “Investigation of the electrical properties and reliability of amorphous SiCN”, ThinSolidFilms, 2004, p.686.
    [2.14] P. Gonon and C. Vallee, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-κ metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 90, 2007, p.142906.
    [2.15] Hosneara, A. Hasnat, A. Hasan Bhuyan, “Structural and Electrical Properties of Reaction Bonded Silicon Nitride Ceramics”, The Open Ceramic Science Journal, 2012, p.50.
    [2.16] Dayu Zhou, U. Schroeder, G. Jegert, M. Kerber, S. Uppal, R. Agaiby, M. Reinicke, J. Heitmann, and L. Oberbeck, “Time dependent dielectric breakdown of amorphous ZrAlxOy high-κ dielectric used in dynamic random access memory ssssssss metal-insulator-metal capacitor”, Journal of Applied Physics, vol. 106, 2009, p.044104.
    [2.17] S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. -L. Kwong, “PVD HfO2 for high-precision MIM capacitor applications”, IEEE Electron Device Letters, vol. 24, 2003, p.387.
    [2.18] Ch. Wenger, G. Lupina, M. Lukosius, O. Seifarth, H.-J. Müssig, S. Pasko and Ch. Lohe, “Microscopic model for the nonlinear behavior of high-κ metal-insulator-metal capacitors”, Journal of Applied Physics, vol. 103, 2008, p.104103.
    [2.19] S. Kim, B. Cho, M. Yu, M. Li, Y. Xiong, C. Zhu, A. Chin, and D. Kwong, ”High capacitance density (>17 fF/μm2) Nb2O5-based MIM capacitors for future RF IC applications”, in VLSI Symp. Tech. Dig., 2005, p.56.
    [2.20] S. Kim, B. Cho, M. Li, S. Ding, C. Zhu, M. Yu, B. Narayanan, A. Chin, and D. Kwong, “Improvement of voltage linearity in high-κ MIM capacitors using HfO2-SiO2 stacked dielectric”, IEEE Electron Device Letters, vol.25, 2004 , p.538.
    [2.21] Y. H. Wu, C. C. Lin, L. L. Chen, B. Y. Chen, M. L. Wu, and J. R. Wu, “Impact of top electrode on electrical stress reliability of metal-insulator-metal capacitor with a amorphous ZrTiO4 film,” Appled Physics Letters, vol. 96, 2010, p.133501.
    [2.22] L. L. Chen, Y. H. Wu, Y. B. Lin, C. C. Lin, and M. L. Wu, “ZrLaOx/ZrTiOx/ZrLaOx Laminate as Insulatorfor MIM Capacitors With High Capacitance Density and Low Quadratic Voltage Coefficient Using Canceling Effect”, IEEE Electron Device Letters, vol. 33, 2012, p.1447.
    [2.23] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, ChunxiangZhu and Y. C. Yeo, “Physical and Electrical Characterization of Metal–Insulator–Metal Capacitors With Sm2O3 and Sm2O3/SiO2 Laminated Dielectrics for Analog Circuit Applications”, IEEE Electron Device Letters, vol. 56, p.2683.
    [2.24] Y. H. Wu, M. L. Wu, R. J. Lyu, J. R. Wu, L. L. Chen, and C. C. Lin, “High-Performance Metal-Insulator-Metal Capacitor Using Stacked TiO2/Y2O3 as Insulator”, IEEE Electron Device Lett., vol. 32, no. 8, 2011, p.1107.
    [2.25] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu and L. L. Chen, “MIM Capacitors With Crystalline-TiO2/SiO2 Stack Featuring High Capacitance Density and Low Voltage Coeffcient”, IEEE Electron Device Letters, vol. 33, 2012, p.104.
    [2.26] B. Y. Tsui, H. H. Hsu and C. H. Cheng, “High-Performance Metal–Insulator–Metal Capacitors With HfTiO/Y2O3 Stacked Dielectric”, IEEE Electron Device Lett., vol. 32 , 2010, p.875.
    [2.27] L. Zhang, W. H. , S. H. Chan and B. J. Cho, “High-Performance MIM CapacitorsUsing HfLaO-Based Dielectrics”, IEEE Electron Device Lett., vol. 31, 2010, p.17.

    [3.1] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li and H. C. Wu, “Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application,” IEEE Electron Device Letters, vol. 30, 2009, p.1290.
    [3.2] K. Xiong, J. Robertson and S. J. Clark, “Passivation of oxygen vacancy states in HfO2 by nitrogen,” Appled Physics Letters, vol. 99, 2006, p.044105.
    [3.3] M. K. Hota, S. Mallik, C. K.Sarkar and C. K. Maiti, “Temperature dependence of TaAlOx metal-insulator-metal capacitors,”Journal of Vacuum Science & Technology, vol. 29, 2011, p.1071.
    [3.4] Revathy Padmanabhan, “High-Performance Metal–Insulator–Metal Capacitors Using Europium Oxide as Dielectric,” Electron Devices, IEEE Transactions on vol. 59, 2012, p.1364.
    [3.5] D. K. Srinivasan, P. Steinmann, R. Wise, M. B. Yu, Y. C. Yeo and Z. Chunxiang, “High Performance Metal-Insulator-Metal Capacitors with Er2O3 on ALD SiO2 for RF Applications,” Journal of The Electrochemical Society ,vol. 158, 2011, p.1289.

    [4.1] G. Lupina, G. Kozłowski, J. Dabrowski, C. h. Wenger, P. Dudek, “Thin BaHfO3 high-k dielectric layers on TiN for memory capacitor applications,” Appled Physics Letters, vol.96, 2008, p.062906.
    [4.2] E. Defay, D. Wolozan, J. P. Blanc, E. Serret, P. Delpech, P. Ancey, “High pass filter with above IC integrated SrTiO3 high K MIM capacitors,” Solid-State Electronics, vol.51, 2007, p.1624.
    [4.3] T. B. Wu, C. M. Wu, M. L. Chen, “Highly insulative barium zirconate-titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications,”Amerrican Institue of Physics,1996, p.2659.
    [4.4] T. Maiti, R. Guo and A. S. Bhalla, “Enhanced electric field tunable dielectricproperties of BaZrxTi1-xO3 relaxor ferroelectrics,” Appled Physics Letters, vol.90, 2007, p.182901.
    [4.5] R. Padmanabhan, N. Bhat, S. Mohan, “Performance and Reliability of Gd2O3 and Stacked Gd2O3-Eu2O3 Metal-Insulator-Metal Capacitors,” Electron Devices, IEEE Transactions on, vol. 60, 2013, p.1523.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE