研究生: |
謝景俞 Hsieh, Ching-Yu |
---|---|
論文名稱: |
用多通腔體脈衝壓縮器實現具79飛秒解析度之瞬態光柵光致發光光譜學 Transient grating photoluminescence spectroscopy with 79 fs time resolution enabled by multi-pass cell pulse compressor |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: |
陳明彰
Chen, Ming-Chang 小西邦昭 Konishi, Kuniaki |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 多通腔體 、脈衝壓縮器 、瞬態光柵光致發光光譜學 、展頻 |
外文關鍵詞: | multi-pass cell, pulse compressor, transient grating photoluminescence spectroscopy, spectral broadening |
相關次數: | 點閱:121 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,飛秒雷射的應用日益廣泛。在光譜學領域,飛秒雷射的短脈衝持續時間使其能夠在更短的時間尺度上測量分子及激子動態。此外,飛秒雷射超寬頻譜的特性,可以獲取更完整的光譜資訊。本研究旨在產生具有160微焦耳脈衝能量的50飛秒脈衝,用於瞬態光柵光致發光光譜學(transient grating photoluminescence spectroscopy, TGPLS)系統, 以達到更好的時間解析度。現有的商用掺鐿雷射雖能產生高脈衝能量,但其脈衝持續時間不易低於一百飛秒,因此需要採用脈衝壓縮技術。常見的方法是先利用非線性效應展寬頻譜,然後進行色散補償。
本研究設計了一個具有固態片子的多通腔體來展寬脈衝的頻譜,成功將脈衝能量為200微焦耳、脈衝持續時間為190飛秒的脈衝壓縮至50飛秒。輸出光保持了出色的光斑輪廓、光束品質和空間頻譜均勻性。此外,它的整體功率高達83%,並良好的保持了0.18%的功率穩定度。最後,測量此輸出光對於瞬態光柵光致發光光譜學系統的儀器響應函數(Instrument response function, IRF),證明了此系統的測量時間解析度可達到79飛秒。最終,使用此輸出光量測了DCM樣品的瞬態螢光光譜圖,證明其用於瞬態光柵光致發光光譜量測的可行性。
In recent years, the applications of femtosecond lasers have become increasingly widespread. In spectroscopy, their short pulse duration allows for the measurement of molecular and exciton dynamics on shorter time scales. Additionally, their broad spectrum enables capture of more complete spectral information. This study aims to generation of 50-femtosecond pulses with 160 μJ pulse energy for use in transient grating photoluminescence spectroscopy (TGPLS) to achieve better time resolution. Existing commercial ytterbium-doped lasers can generate high pulse energy, but achieving pulse durations shorter than 100 femtoseconds is difficult, necessitating pulse compression techniques. The common method involves broadening the spectrum using nonlinear effects, followed by dispersion compensation.
In this study, a multi-pass cell with a solid plate was designed to broaden the pulse spectrum, successfully compressing pulses with an energy of 200 micro-joules and a duration of 190 femtoseconds down to 50 femtoseconds. The output light maintained excellent beam profile, beam quality, and spatio-spectral homogeneity. Furthermore, it achieved a high overall power throughput of 83%, and a great power stability of 0.18%. Finally, measuring the instrument response function (IRF) for this output light in a TGPLS system demonstrated a time resolution of 79 femtoseconds. The transient fluorescence spectrogram of a DCM sample was measured using the light source, demonstrating its feasibility for use in TGPLS measurements.
[1] D. Zhong and A. H. Zewail, “Femtosecond real-time probing of reactions. 23. studies of temporal, velocity, angular, and state dynamics from transition states to final products by femtosecond-resolved mass spectrometry,” The Journal of Physical Chemistry A, vol. 102, no. 23, pp. 4031–4058, 1998.
[2] A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multiphoton excitation microscopy,” Biomedical engineering online, vol. 5, pp. 1–14, 2006.
[3] S. Ghimire and D. A. Reis, “High-harmonic generation from solids,” Nature physics, vol. 15, no. 1, pp. 10–16, 2019.
[4] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-modelocked ti: sapphire laser,” Optics letters, vol. 16, no. 1, pp. 42–44, 1991.
[5] A. d’Aléo, A. Bourdolle, S. Brustlein, T. Fauquier, A. Grichine, A. Duperray, P. Baldeck, C. Andraud, S. Brasselet, and O. Maury, “Ytterbium-based bioprobes for near-infrared two-photon scanning laser microscopy imaging.,” Angewandte Chemie International Edition, vol. 51, no. 27, pp. 6622–5, 2012.
[6] P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, et al., “Innoslab amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 1, pp. 447–463, 2014.
[7] R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett., vol. 24, pp. 592–594, Mar 1970.
[8] F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications, vol. 3, no. 1, p. 807, 2012.
[9] V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nature communications, vol. 7, no. 1, p. 12877, 2016.
[10] G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” JOSA B, vol. 24, no. 8, pp. 1771–1785, 2007.
[11] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica, vol. 1, no. 6, pp. 400–406, 2014.
[12] M. Seo, K. Tsendsuren, S. Mitra, M. Kling, and D. Kim, “High-contrast, intense singlecycle pulses from an all thin-solid-plate setup,” Optics Letters, vol. 45, no. 2, pp. 367–370, 2020.
[13] T. Okamoto, Y. Kunihashi, Y. Shinohara, H. Sanada, M.-C. Chen, and K. Oguri, “Operation at 1 mhz of 1.7-cycle multiple plate compression at 35-w average output power,” Optics Letters, vol. 48, no. 10, pp. 2579–2582, 2023.
[14] G. Barbiero, H. Wang, M. Graßl, S. Gröbmeyer, D. Kimbaras, M. Neuhaus, V. Pervak, T. Nubbemeyer, H. Fattahi, and M. F. Kling, “Efficient nonlinear compression of a thindisk oscillator to 8.5 fs at 55 w average power,” Optics letters, vol. 46, no. 21, pp. 5304–5307, 2021.
[15] Y. Pfaff, G. Barbiero, M. Rampp, S. Klingebiel, J. Brons, C. Y. Teisset, H. Wang, R. Jung, J. Jaksic, A. H. Woldegeorgis, et al., “Nonlinear pulse compression of a 200 mj and 1 kw ultrafast thin-disk amplifier,” Optics express, vol. 31, no. 14, pp. 22740–22756, 2023.
[16] E. Vicentini, Y. Wang, D. Gatti, A. Gambetta, P. Laporta, G. Galzerano, K. Curtis, K. McEwan, C. R. Howle, and N. Coluccelli, “Nonlinear pulse compression to 22 fs at 15.6 μj by an all-solid-state multipass approach,” Optics express, vol. 28, no. 4, pp. 4541–4549, 2020.
[17] M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, “All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses,” Optics express, vol. 24, no. 9, pp. 9412–9428, 2016.
[18] K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra,” The journal of physical chemistry letters, vol. 5, no. 10, pp. 1732–1737, 2014.
[19] R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Physical Review A, vol. 17, no. 4, p. 1448, 1978.
[20] A. M. Weiner, Ultrafast optics. John Wiley & Sons, 2011.
[21] S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashortpulse compressor,” Optics express, vol. 14, no. 21, pp. 10101–10108, 2006.
[22] T. Zhang, M. Yonemura, and Y. Kato, “An array-grating compressor for high-power chirped-pulse amplification lasers,” Optics communications, vol. 145, no. 1-6, pp. 367–376, 1998.
[23] P. Dombi, V. S. Yakovlev, K. O'Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Optics Express, vol. 13, no. 26, pp. 10888–10894, 2005.
[24] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Review of Scientific Instruments, vol. 68, no. 9, pp. 3277–3295, 1997.
[25] J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Optics letters, vol. 22, no. 8, pp. 519–521, 1997.
[26] K. DeLong, R. Trebino, J. Hunter, and W. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” JOSA B, vol. 11, no. 11, pp. 2206–2215, 1994.
[27] J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H.-D. Hoffmann, T. Udem, P. Russbüldt, and T. W. Hänsch, “Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 μj pulse energy and 300 w average power,” Optics express, vol. 25, no. 17, pp. 20502–20510, 2017.
[28] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2019.
[29] D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Applied Optics, vol. 3, no. 4, pp. 523–526, 1964.
[30] A.-L. Viotti, M. Seidel, E. Escoto, S. Rajhans, W. P. Leemans, I. Hartl, and C. M. Heyl, “Multi-pass cells for post-compression of ultrashort laser pulses,” Optica, vol. 9, no. 2, pp. 197–216, 2022.
[31] V. Hariton, K. Fritsch, K. Schwarz, N. Kovalenko, G. Figueira, G. Arisholm, and O. Pronin, “Spectral broadening in convex-concave multipass cells,” Optics Express, vol. 31, no. 12, pp. 19554–19568, 2023.
[32] A. Omar, M. Hoffmann, G. Galle, F. Sylla, and C. J. Saraceno, “Hybrid air-bulk multi-pass cell compressor for high pulse energies with full spatio-temporal characterization,” Optics Express, vol. 32, no. 8, pp. 13235–13248, 2024.
[33] P. Kabaciński, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Nonlinear refractive index measurement by spm-induced phase regression,” Optics express, vol. 27, no. 8, pp. 11018–11028, 2019.
[34] R. Paschotta, “Kerr lens.” RP Photonics Encyclopedia.
[35] E. Nibbering, P. Curley, G. Grillon, B. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Optics letters, vol. 21, no. 1, pp. 62–64, 1996.
[36] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order kerr refractive index of major air components,” Optics express, vol. 17, no. 16, pp. 13429–13434, 2009.
[37] R. Loudon, “The raman effect in crystals,” Advances in Physics, vol. 13, no. 52, pp. 423–482, 1964.
[38] O. Kwon, R. Safaei, P. Lassonde, G. Fan, A. Baltuška, B. E. Schmidt, H. Ibrahim, and F. Légaré, “Raman effect in the spectral broadening of ultrashort laser pulses in saturated versus unsaturated hydrocarbon molecules,” Optics Express, vol. 28, no. 2, pp. 980–990, 2020.
[39] D. C. Easter and A. Baronavski, “Ultrafast relaxation in the fluorescent state of the laser dye dcm,” Chemical physics letters, vol. 201, no. 1-4, pp. 153–158, 1993.
[40] “Time-resolved fluorescence spectroscopy.” https://lightcon.com/application/time-resolved-fluorescence-spectroscopy/. (Accessed on 07/17/2024).
[41] C.-L. Tsai, F. Meyer, A. Omar, Y. Wang, A.-Y. Liang, C.-H. Lu, M. Hoffmann, S.-D. Yang, and C. J. Saraceno, “Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 w average power,” Optics Letters, vol. 44, no. 17, pp. 4115–4118, 2019.