簡易檢索 / 詳目顯示

研究生: 林聖欽
論文名稱: 以CuO/SDC觸媒在富氫下行一氧化碳選擇氧化
Selective CO oxidation in rich hydrogen by using CuO/SDC
指導教授: 黃大仁
Ta-Jen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 84
中文關鍵詞: 導氧離子材料選擇氧化一氧化碳氧化氧化銅
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用具有氧空洞的氧化釤添加氧化鈰(Samarium-Doped Ceria, 簡稱SDC)當載體,以含浸法將5wt%Cu擔載於擔體上,經500℃鍛燒製成觸媒。反應以氫氣作為載氣,通以定量的氧氣和CO,觀察其與載氣為Ar時的差異,及氫氣消耗的變化,發現在氫氣下CO的轉化率較低,認為氫氣的存在會於觸媒表面生成OH基,而抑制CO氧化反應的進行,至於氫氣的消耗情形,發現操作溫度在80∼120℃時,H2的消耗量不大,但CO的轉化率不高;而當溫度超過130℃時,雖然提高了CO的轉化率,卻會造成H2的大量消耗,而此溫度之取決,完全受限制於CO和H2對界面間氧原子的作用力,而TPRα波峰出現的溫度關係著反應起燃的溫度。在升溫和降溫測試中,認為遲滯現象的存在除了是穩定的界面活性位和熱點外,氧化銅群集形成亞穩態的表面活性位,也是造成遲滯現象的原因之一。另外,也藉由觀察在160℃下時,CO和H2競爭氧活性位的情形,發現與氫氣相較之下,CO對氧的反應力較強,故能使觸媒具有選擇性。在SDC擔體的製備方面,以水、乙醇、八醇三種不同的溶液製備擔體,使其造成不同的擔體表面積,而5wt%銅擔於較大表面積的擔體時,具有較多的界面活性位,故有較高的CO轉化率,然而,相對的使氫氣更易與氧發生反應。對於CuO/SDC觸媒的適用性,由實驗結果中評估,認為只要能提高此觸媒在低溫時的轉化率,即能使其成為具應用價值的材料。


    第一章、 前言 1 第二章、 文獻回顧 3 2.1 燃料電池的發展 3 2.2 選擇氧化的研究 6 2.3 觸媒材料的選擇 7 2.4 提升活性的原理 10 2.5 導氧離子材料-SDC 12 2.6 程溫還原 14 第三章、 實驗方法與步驟 16 3.1 觸媒製備 16 3.1.1 藥品 3.1.2 製備方法 3.2 活性測試系統 21 3.2.1 儀器 3.2.2 活性測試步驟 3.2.3 數據處理 3.3 程溫還原測試 25 3.3.1 一氧化碳程溫還原 3.3.2 氫氣程溫還原 3.4 觸媒鑑定 26 3.4.1 X-光繞射(X-Ray Diffraction,XRD) 3.4.2 粒徑量測 3.4.3 氮氣物理吸附表面積 第四章、 實驗結果 29 4.1 CuO/SDC對CO選擇氧化的反應特性 29 4.2 CuO/SDC活性衰退情形及反應後還原波峰 34 4.3 不同前處理對CuO/SDC觸媒的影響 37 4.4 氧分壓及觸媒量對選擇氧化的影響 39 4.5 不同表面積的SDC對CuO/SDC觸媒的影響 42 4.6 CO和H2競爭反應的情形 45 4.7 基本金屬氧化物於SDC上之CO氧化活性 50 4.8 氧化鈷在不同製備下之活性比較 53 第五章、 討論 55 5.1 觸媒活性座的變化情形 56 5.2 Bulk銅的影響 60 5.3 擔體表面積的影響 62 5.4 氧化鈷的活性 64 5.5 CuO/SDC觸媒對選擇氧化的適用性 67 第六章、 結論 69 第七章、 建議及未來方向 71 第八章、 參考文獻 72 附錄 80

    【1】「氫氣燃料電池技術」,化工技術第七卷第十期164-171,1999年10月。
    【2】J.C. Amphlett, K.A.M. Creber, J.M.Davis, R.F. Mann, B.A. Peppley and D.M. Stokes, "Hydrogen Production By Stream Reforming of Methanol for Polymer Electrolyte Fuel Cells", Int. J. Hydrogen Energy, Vol.19, No.2 (1994) 131-137.
    【3】Alejo, R. Lago, M.A. Peña, J.L.G. Fierro, "Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts", Applied Catalysis A:General, 162 (1997) 281-297.
    【4】Neil Edwards, Suzanne R. Ellis, Jonathan C. Frost, Stanislaw E, Golunski, Arjan N.J. van Keulen, Nickas G. Lindewald. Jessica G. Reinkingh, "On-board hydrogen generation for transport applications: the Hotspot methanol processor", Journal of Power Sources, 71 (1998) 123-128.
    【5】B. Höhlein, M. Boe, J. Bøgild-Hausen, P. Bröckerhoff, G. Colsman, B. Emonts, R. Menzer, E. Riedel, "Hydrogen from methanol for fuel cealls in mobile systems: development of a compact reformer", Journal of Power Source, 61 (1996) 143-147.
    【6】B. Emonts, J. Bøgild Hansen, S.Lægsgaard Jørgensen, B.Höhlein, R. Peters, "Compact methanol reformer test for fuel-cell powered light-duty vehicles", Journal of Power sources, 71 (1998) 288-293.
    【7】Markus M. Schubert, Hubert A. Gasteiger, and R. Jürgen Behm, "Surface Formates as Side Products in the Selective CO Oxidation on Pt/γ-Al2O3", Journal of Catalysis, 172 (1997) 256-258.
    【8】M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, "Kinetics of the selective CO Oxidation in H2-Rich Gas in Pt/Al2O3", Journal of Catalysis, 171(1997) 93-105.
    【9】Hiroshi Igarashi, Hiroyuki Uchida, Miki Suzuki, Yuko Sasaki, Masahiro Watanable, "Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite", Applied Catalysis A:General ,159 (1997) 159-169.
    【10】G. K. Bethke, H. H. Kung, "Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts", Applied Catalysis A:General, 194-195 (2000) 43-53.
    【11】Shin-Ichi Ito, Tatsushi Fujimori, Ken Nagashima, Koichi Yuzaki, Kimio Kunimori, "Strong rhodium-niobia interaction in Rh/Nb2O5, Nb2O5-Rh/SiO2 and PhNbO4/SiO2 catalysts", Catalysis Today 57 (2000) 247-254.
    【12】Y. Teng, H. Sakurai, A. Ueda, T. Kobayashi, "Oxidation removal of CO contained in hydrogen by using metal oxide catalysts", Int. J. Hydrogen Energy, 24 (1999) 355-358.
    【13】Toshimasa Utaka, Koshi Sekizawa, Koichi Eguchi, "CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts", Applied Catalysis A:General, 194-195 (2000) 21-26.
    【14】Koshi Sekizawa, Sei-ichi Yano, Koichi Eguchi, Hiromichi Arai, "Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides", Applied Catalysis A:General, 169 (1998) 291-297.
    【15】W. P. Dow, Y. P. Wang and T. J. Huang, “Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction”, Journal of Catalysis, 160, 155 (1996).
    【16】W. P. Dow and T. J. Huang, “Yttria-Stabilized Zirconia Supported Copper Oxide catalyst: II. Effect of Oxygen Vacancy of Support on Catalytic Activity for CO Oxidation”, Journal of Catalysis, 160, 171 (1996).
    【17】謝文浩,"氧化釤添加氧化鈰/氧化鋁擔體擔載銅觸媒行一氧化碳氧化反應之研究",碩士論文,清華大學化工所,民國八十八年。
    【18】Jin T., T.Okuhara, G. J. Mains,and J. M. White,“Temperature–Programmed Desorption of CO and CO2 from Pt/CeO2 .An Important Role for Lattice Oxygen in CO Oxidation”, J. Phys. Chem. ,91, (1987) 3310.
    【19】Serre, F. Garin, G. Belot, and G. Maire,“Reactivity of Pt/Al2O3 and Pt-CeO2/Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen”, Journal of Catalysis, 141 (1993) 1.
    【20】Wei Liu, Maria Flytzani-Stephanopoulos, “Total Oxidation of Carbon Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalyst: II. Catalyst Characterization and Reaction Kinetics”, Journal of Catalysis, 153 (1995) 317.
    【21】Sanchez M. G. and J. L. Gazquez, “Oxygen Vacancy Model in Strong Metal-Support Interaction”, Journal of Catalysis, 140 (1987) 120.
    【22】Hidenior Yahiro, Yukari Eguchi, Kiochi Eguchi, Hiromichi Arai, “Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Flourite Structure", J. Appl. Electroche.18 (1987) 527.
    【23】Y. Amenomiya, and R. J. Cvetanovic,“Application of Flash-Desorption Method to Catalyst Studies.I.Ethylene-Alumina System”, J. Phys. Chem.67 (1963) 144.
    【24】Alan Jones, Brian McNicol, “Temperature-Programmed Reduction for Solid Materials Characterization”, Marcel Dekker, Inc., New York.
    【25】蔡德豪,"氧化釤添加氧化鈰/氧化鋁擔體擔載銅觸媒行一氧化碳氧化反應之研究",碩士論文,清華大學化工所,民國八十八年。
    【26】鐘國濱,"以改良式溶膠凝膠法製備氧化釤添加氧化鈰及其相變化與離子導性之研究”,博士論文,清華大學化工所,1998。
    【27】W. P. Dow, Y. P. Wang and T. J. Huang,“ Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation Over Copper Catalyst ”, Journal of Catalysis 147 (1994) 322-332.
    【28】A. Martínez-Arias, M. Fernández-García, J. Soria, and J. C. Conesa "Spectroscopic study of a Cu/CeO2 Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen", Journal of Catalysis 182, (1999) 367-377.
    【29】Per-Olof Larsson, Arne Andersson, L.Reine Wallenberg, and Bo Svensson, "Combustion of CO and Toluene; Characterisation of Copper Oxide Supported on Titania and Activiy Comparisons with Supported Cobalt, Iron, and Manganese Oxide", Journal of Catalysis 163 (1996) 279-293.
    【30】Eric van Steen, Gary S. Sewell, Rafene A. Makhothe, Craig Micklethwaite, Heiko Manstein, Marthijn de Lande, and Cyril T. O’Connor, "TPR Study on the Preparation of Impregnated Co/SiO2 Catalysts", Journal of Catalysis 162 (1996) 220-229.
    【31】P. Thormählen, M. Skoglundh, E. Fridell, and B.Andersson, "Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts", Journal of Catalysis 188 (1999) 300-310.
    【32】Jonas Jansson, "Low-Temperature CO Oxidation over Co3O4/Al2O3", Journal of Catalysis 194 (2000) 55-60.
    【33】Y. Boudeville, and E. E. Wolf, "Monte Carlo Simulation of Temperature Programmed Reaction and Surface Explosion during CO Oxidation on a Pt Catalyst", Surf. Sci.297, L127 (1993).
    【34】A. Martínez-Arias, M. Fernández-García, O. Gálvez, J. M. Coronado, J. A. Anderson, J. C. Conesa, J.Soria, and G. Munuera "Comparative study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/ZrCeO4 Catalysts", Journal of Catalysis 195 (2000) 207-216.
    【35】Kwang-Deog Jung and Alexis T. Bell, "Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2", Journal of Catalysis 193 (2000) 207-223.
    【36】Meng-Fei Luo, Yi-Jun Zhong, Xian-Xin Yuan, Xiao-Ming Zheng "TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation", Applied Catalysis A: General 162 (1997) 121-131.
    【37】Wei Liu, Maria Flytzani-Stephanopoulos, “Total Oxidation of Carbon Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalyst: I. Catalyst Composite and Activity”, Journal of Catalysis, 153 (1995) 304.
    【38】K. Nagase, Y. Zheng, Y. Kodama, and J. Kakuta, "Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O", Journal of Catalysis 187 (1999) 123-130.
    【39】G. G. Jernigan and G. A. Somorjai, "Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide-A Surface Science and Kinetic Study", Journal of Catalysis 147 (1994) 567-577.
    【40】G. G. Jernigan and G. A. Somorjai, "Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide-A Surface Science and Kinetic Study", Journal of Catalysis 165 (1997) 279-283.
    【41】Arthur Balian, George Hatzigiannis, Douglas Eng, and Michael Stoukides, "Solid Electrolyte Aided Study of the Oxidation of Hydrogen on Copper and Copper Oxidation Catalysts", Journal of Catalysis 145 (1994) 526-536.
    【42】Yulong Zhang, Dongguang Wei, Sonia Hammache, and James G, Goodwin, Jr., "Effect of Water Vapor on the Reduction of Ru-Promoted Co/Al2O3", Journal of Catalysis 188 (1999) 281-290.
    【43】A. Törncrona, M. Skoglundh, P. Thormählen, E. Fridell, E. Jobson, "Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -influence of pretreatment and gas composition", Applied Catalysis B: Enviromental 14 (1997) 131-146.
    【44】D.A.H. Cunningham, T. Kobayashi, N. Kamijo and M. Haruta, "Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts", Catalysis Letters 25 (1994) 257-264.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE