簡易檢索 / 詳目顯示

研究生: 廖瑩蟬
Liao, Ying Chan
論文名稱: 水熱法合成BiFeO3和Bi2Fe4O9及改變其形貌
Fabrication of BiFeO3 and Bi2Fe4O9 with Controllable Morphologies via the Hydrothermal Approach
指導教授: 闕郁倫
Chueh, Yu-Lun
蔡哲正
Tsai, Cho-Jen
口試委員: 林居南
俎永熙
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 210
中文關鍵詞: 鐵酸鉍水熱法
外文關鍵詞: bismuth ferrites
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The bismuth ferrites have attracted renewed interest in applications not only because BiFeO3, with high Curie temperature (TC = 1143 K) and Neel temperature (TN = 643 K), is a room temperature multiferroic material, but also because there is another phase, Bi2Fe4O9 with space group Pbam and Neel temperature TN = 263 K, that has variety of applications including gas sensor, photocatalysts and catalysts. Through conventional hydrothermal synthetic route, we can obtain well-defined single crystallites of Bi2Fe4O9 and BiFeO3. The crystals obtained were characterized by the SEM (scanning electron microscope), XRD (X-ray diffraction), TEM (Transmission electron microscope) and VSM (Vibrating sample magnetometer) techniques. In addition, we were able to successfully synthesize a variety of morphologies of BiFeO3 and Bi2Fe4O9 by adding surfactant, oxidative anion, different ratios of precursor or K+/Na+, and by controlling the temperatures of suspension and mineralizer solutions. Controllable morphologies with facile hydrothermal methods are potentially useful in the aspect of variable magnetic, optical and electrical properties through development of various faces.

    Contents Abstract I Acknowledgement ……………………………………………………....Ⅱ Chapter 1 Introduction 1 1-1 The properties of Bi2Fe4O9 and BiFeO3 1 1-1.1 Bi2Fe4O9 1 1-1.2 BiFeO3 7 1-1.3 Multiferroic materials: 13 1-2 Preparation of Bi2Fe4O9 and BiFeO3 by hydrothermal approaches: 20 1-2.1 Introduction of hydrothermal synthetic methods: 20 1-2.2 Hydrothermal methods for ternary bismuth ferrites: 22 1-3 Motivation: 38 Chapter 2 Experimental procedures 39 2-1 Hydrothermal Synthesis of Bi2Fe4O9 and BiFeO3 single crystals 39 2-2 Scanning Electron Microscope Observation (SEM) 42 2-3 X-ray Diffraction Analysis (XRD) 42 2-4 Transmission Electron Microscope Observation (TEM) 42 2-5 Vibrating sample magnetometer (VSM) 43 Chapter 3 Results and discussion 44 3-1 The effect of the surfactant polyethylene glycol (PEG) on BiFeO3 and Bi2Fe4O9 44 3-1.1 PEG (M.W. = 200) in the Bi-Fe solution 44 3-1.2 PEG (M.W. = 6000) in the Bi-Fe solution 52 3-2 The participation of Fe2+ ions in the Bi-Fe reaction system 62 3-2.1 The introduction of FeCl2‧4H2O compound into the Bi-Fe solution environment 62 3-2.2 The introduction of FeSO4‧7H2O compound into the Bi-Fe solution environment 70 3-2.3 Different synthetic time 77 3-2.4 Discussion of possible formation mechanism for the donut shape structure with the presence of FeSO4.7H2O or FeCl2.4H2O 85 3-3 The syntheses of rod-like structure Bi2Fe4O9 92 3-3.1 Syntheses rod structure of Bi2Fe4O9 for different hydrothermal temperature in the Fe3+ rich environment 92 3-3.2 Tuning the molar ratio of precursor Bi3+ and Fe3+ 108 3-3.3 Syntheses of the rod structure of Bi2Fe4O9 with different molar ratio of K+ and Na+ in the Fe3+ rich environment 117 3-3.4 The addition of surfactant of hexadecyl trimethyl ammonium chloride (CTAC) in the condition of Bi3+ / Fe3+ = 1/2 for various reaction time 138 3-3.5 Temperature issue of mineralizer on the elongated structure of Bi2Fe4O9 151 3-3.6 The temperature difference between mineralizer and mixing solutions 174 3-3.7 The reaction system of Bi3+/Fe3+ = 1/2 under different reaction temperature 193 Chapter 4 Conclusion 204 Reference………………………………………………………………207

    [1] S. Sun, W. Wang, L. Zhang, and M. Shang, Journal of Physical Chemistry C, vol. 113, 2009.
    [2] A. Poghossian, H. Abovian, P. Acakian, S. Mkrtchian, and V. Haroutunian, Sensors and Actuators B, vol. 4, 1991.
    [3] N. Zakharchenko, Kinetics and Catalysis, vol. 43, 2002.
    [4] N. Zakharchenko, Russian Journal of Applied Chemistry, vol. 73, 2000.
    [5] Y. Xiong, M. Wu, Z. Peng, N. Jiang, and Q. Chen, Chemistry Letters, vol. 33, 2004.
    [6] Q. Ruan and W. Zhang, Journal of Physical Chemistry C, vol. 113, 2009.
    [7] X. Zhang, J. Lv, L. Bourgeois, J. Cui, Y. Wu, H. Wang, and P. A. Webley, New Journal of Chemistry, vol. 35, 2011.
    [8] N. Shamir and E. Gurewitz, Acta Crystallographica, vol. A34, 1978.
    [9] A. Singh, S. Kaushik, B. Kumar, P. Mishra, A. Venimadhav, and V. Siruguri, Applied Physics Letters, vol. 92, 2008.
    [10] E. Ressouche, V. Simonet, B. Canals, M. Gospodinov, and V. Skumryev, Physical Review Letters, vol. 103, 2009.
    [11] M. Iliev, A. Litvinchuk, V. Hadjiev, M. Gospodinov, V. Skumryev, and E. Ressouche, Physical Review B, vol. 81, 2010.
    [12] Q. Zhang, W. Gong, J. Wang, X. Ning, Z. Wang, X. Zhao, W. Ren, and Z. Zhang, The Journal of Physical Chemistry C, vol. 115, 2011.
    [13] Y. Li, Y. Zhang, W. Ye, J. Yu, C. Lu, and L. Xia, New Journal of Chemistry, vol. 36, 2012.
    [14] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, vol. 442, 2006.
    [15] F. Kubel and H. Schmid, Acta Crystallographica Section B, vol. 46, 1990.
    [16] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Physical Review B, vol. 76, 2007.
    [17] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nature materials, vol. 5, 2006.
    [18] T. Munoz, J. Rivera, A. Bezinges, A. Monnier, and H. Schmid, Journal of Applied Physics, vol. 24, 1985.
    [19] I. Sosnowskat, T. Peterlin, and E. Steichele, Solid State Physics, vol. 15, 1982.
    [20] G. Catalan and J. F. Scott, Advanced Materials, vol. 21, 2009.
    [21] R. Smith, G. Achenbach, R. Gerson, and W. James, Journal of Applied Physics, vol. 39, 1968.
    [22] J. Moreau, C. Michel, R. Gerson, and W. James, Journal of Physics and Chemistry of Solids, vol. 32, 1971.
    [23] J. Teague, R. Gerson, and W. James, Solid State Communications, vol. 8, 1970.
    [24] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, vol. 299, 2003.
    [25] M. Abplanalp, Journal of Applied Physics, vol. 91, 2002.
    [26] S. K. Streiffer, Journal of Applied Physics, vol. 83, 1998.
    [27] C. Ederer and N. Spaldin, Physical Review B, vol. 71, 2005.
    [28] K. Aizu, Physical Review B, vol. 2, 1970.
    [29] B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, Nature, vol. 449, 2007.
    [30] H. Schmid, Ferroelectrics, vol. 162, 1994.
    [31] Proceedings of the 5th International Workshop on Magnetoelec- tric Interaction Phenomena in Crystals, 2004.
    [32] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Letters to Nature, vol. 426, 2003.
    [33] V. Wood, A. Austin, A. Freeman, and H. Schmid, Gordon and Breach Science Publishers London, 1975.
    [34] I. E. Dzyaloshinskii, Journal of Experimental and Theoretical Physics, vol. 37, 1959.
    [35] D. Astrov, Journal of Experimental and Theoretical Physics, vol. 38, 1960.
    [36] Scifinder Scholar, version 2006
    [37] N. Hill, The Journal of Physical Chemistry B, vol. 104, 2000.
    [38] N. A. Hill and A. Filippetti, Journal of Magnetism and Magnetic Materials, vol. 976, 2002.
    [39] C. Ederer and N. A. Spaldin, Current Opinion in Solid State and Materials Science, vol. 9, 2006.
    [40] D. I. Khomskii, Journal of Magnetism and Magnetic Materials, vol. 306, 2006.
    [41] M. Bichurin, V. Petrov, and G. Srinivasan, Physical Review B, vol. 68, 2003.
    [42] D. Schlom, J. Haeni, J. Lettieri, C. Theis, W. Tian, J. Jiang, and X. Pan, Materials Science and Engineering B, vol. 87, 2001.
    [43] H. Schmid, International Journal of Magnetic, vol. 4, 1973.
    [44] R. Seshadri and N. Hill, Chemistry of Materials, vol. 13, 2001.
    [45] H. Wiegelmann, I. Vitebsky, A. Stepanov, A. Jansen, and P. Wyder, Key Engineering Materials, vol. 429, 1998.
    [46] B. I. Al’shin, D. N. Astrov, and R. V. Zorin, Journal of Experimental and Theoretical Physic, vol. 63, 1972.
    [47] E. Ascher, H. Rieder, H. Schmid, and H. Stoessel, Journal of Applied Physics, vol. 37, 1966.
    [48] M. Fiebig, Applied Physics, vol. 38, 2005.
    [49] J. Kim, S. Kim, W. Kim, A. Bhalla, and R. Guo, Applied Physics Letters, vol. 88, 2006.
    [50] H. Uchida, R. Ueno, H. Funakubo, and S. Koda, Journal of Applied Physics, vol. 100, 2006.
    [51] X. Qi, J. Dho, R. Tomov, M. Blamire, and J. MacManus-Driscoll, Applied Physics Letters, vol. 86, 2005.
    [52] K. Brinkman, T. Iijima, K. Nishida, T. Katoda, and H. Funakubo, Ferroelectrics, vol. 357, 2007.
    [53] R. Ramesh and N. Spaldin, Nature materials, vol. 6, 2007.
    [54] C. Dubourdieu, G. Huot, I. Gelard, H. Roussel, O. Lebedev, and G. Tendeloo, Philosophical Magazine Letters, vol. 87, 2007.
    [55] C. Song, C. Wang, Y. Yang, X. Liu, F. Zeng, and F. Pan, Applied Physics Letters, vol. 92, 2008.
    [56] J. Van den Boomgaard, A. Van Run, and J. Van Suchtelen, Ferroelectrics, vol. 10, 1976.
    [57] J. Van den Boomgaard and R. Born, Journal of Materials Science, vol. 13, 1978.
    [58] K. Byrappa and T. Adschiri, Progress in Crystal Growth and Characterization of Materials Letters, vol. 53, 2007.
    [59] K. Byrappa and M. Yoshimura, Noyes Publications, 2001.
    [60] L. Demianets and A. Lobach, Angewandte Chemie International Edition, vol. 14, 1979.
    [61] C. Petit, A. Taleb, and M. Pileni, Advanced Materials, vol. 10, 1998.
    [62] B. Li, Y. Xie, J. Huang, and Y. Qian, Advanced Materials, vol. 11, 1999.
    [63] H. Chang, F. Kosari, G. Andreadakis, M. Alam, G. Vasmatzis, and R. Bashir, Nano Letters, vol. 4, 2004.
    [64] X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature, vol. 437, 2005.
    [65] D. Maurya, H. Thota, S. Kanwar, and A. Garg, Journal of Alloys and Compounds, vol. 477, 2009.
    [66] J. Wei and D. Xue, Materials Research Bulletin, vol. 43, 2008.
    [67] T. Comyn, D. Kanguwe, and J. He, Journal of the European Ceramic Society, vol. 28, 2008.
    [68] H. Bo, G. Tan, H. Miao, and A. Xia, Advanced Materials Research, vol. 105, 2010.
    [69] H. Miao, Q. Zhang, G. Tan, and G. Zhu, Rare Metal Materials and Engineering, vol. 36, 2007.
    [70] L. Chapon, G. Blake, M. Gutmann, S. Park, N. Hur, P. Radaelli, and S. Cheong, Physical Review Letters, vol. 93, 2004.
    [71] X. Zhang, C. Lai, X. Zhao, D. Wang, and J. Dai, Applied Physics Letters, vol. 87, 2005.
    [72] H. Koizumi, N. Niizeki, and T. Ikeda, Journal of Applied Physics, vol. 3, 1964.
    [73] T. Park, G. Papaefthymiou, A. Moodenbaugh, Y. Mao, and S. Wong, Journal of Materials Chemistry, vol. 15, 2005.
    [74] Z. Yang, Y. Huang, B. Dong, H. Li, and S. Shi, Journal of Solid State Chemistry, vol. 179, 2006.
    [75] J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang, and J. B. Goodenough, Advanced Materials, vol. 18, 2006.
    [76] J. T. Han, Y. H. Huang, R. J. Jia, G. C. Shan, R. Q. Guo, and W. Huang, Journal of Crystal Growth, vol. 294, 2006.
    [77] X. Zhang, L. Bourgeois, J. Yao, H. Wang, and P. A. Webley, Small, vol. 3, 2007.
    [78] Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han, Ceramics International, vol. 35, 2009.
    [79] H. Zhang and K. Kajiyoshi, Journal of the American Ceramic Society, vol. 93, 2010.
    [80] D. Cai, D. Du, S. Yu, and J. Cheng, Procedia Engineering, vol. 27, 2012.
    [81] J. W. Mullin, Oxford, 2001.
    [82] N. Niizeki, M. Wachi, and Z. Kristallogr, Archive International Journal of Materials Research, vol. 127, 1968.
    [83] T. J. Park, G. C. Papaefthymiou, A. R. Moodenbaugh, Y. Mao, and S. S. Wong, Journal of Materials Chemistry, vol. 15, 2005.
    [84] S. Li, Y. H. Lin, B. P. Zhang, Y. Wang, and C. W. Nan, The Journal of Physical Chemistry C, vol. 114, 2010.
    [85] Y. Sun and Y. Xia, Science, vol. 298, 2002.
    [86] Z. L. Wang and J. H. Song, Science, vol. 312, 2006.
    [87] X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, Nature, vol. 437, 2005.
    [88] T. M. Tian, S. L. Yuan, X. L. Wang, X. F. Zheng, S. Y. Yin, C. H. Wang, and L. Liu, Applied Physics Letters, vol. 106, 2009.
    [89] Q. J. Ruan and W. D. Zhang, The Journal of Physical Chemistry B, vol. 113, 2009.
    [90] M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, vol. 281, 1998.
    [91] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science, vol. 287, 2000.
    [92] J. F. Wang, M. S. Gudiksen, Y. Cui, and C. M. Lieber, Science, vol. 293, 2001.
    [93] Y. W. Jun, J. S. Choi, and J. Cheon, Angewandte Chemie International Edition, vol. 45, 2006.
    [94] B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Nano Letters, vol. 4, 2004.
    [95] Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni and Y. Yin, Journal of the American Chemical Society, vol. 127, 2005.
    [96] B. Wiley, Y. Sun, and Y. Xia, Langmuir, vol. 21, 2005.
    [97] S. Xu, X. Sun, H. Ye, T. You, X. Song, and S. Sun, Materials Chemistry and Physics, vol. 120, 2010.
    [98] J. Yang and T. Sasaki, Crystal Growth and Design, vol. 10, 2010.
    [99] H. Deng, J. Wang, Q. Peng, X. Wang, and Y. Li, Chemistry - A European Journal, vol. 11, 2005.
    [100] F. Huang, H. Z. Zhang, and J. F. Banfield, Nano Letters, vol. 3, 2003.
    [101] M. N. Rahaman and M. Dekker, New York, 1995.
    [102] V. K. LaMer and R. H. Dinegar, Journal of the American Chemical Society, vol. 72, 1950.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE