簡易檢索 / 詳目顯示

研究生: 黃啟政
Chi-Cheng Huang
論文名稱: 氮化銦陰離子感測器
Indium Nitride Based Anion Sensor
指導教授: 葉哲良
J. Andrew Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: 氮化銦陰離子感測器
外文關鍵詞: InN, Anion, Sensor
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來因為低能隙(0.7電子伏特)的關係,氮化銦半導體被廣泛應用於太陽能電池上。最近,氮化銦表面附近電荷堆積這個現象被實驗證明及其造成表面為帶正電的表面狀態。依化學的角度來看,表面正電荷可視為酸基,會吸引帶電子的鹼基。基於此項特質,本論文使用氮化銦半導體做為陰離子感測器,並針對酸、鹼、鹽三種水溶液進行感測特性的分析。
    結果顯示氮化銦表面在此三種水溶液中皆會產生負電位。更近一步的分析顯示所有的反應行為只跟表面的庫倫作用力有關,並與文獻中的模型相符。另外,未經處理的氮化銦氧化物會減弱表面正電荷造成的電場,進而影響其靈敏度和穩定性。
    此研究結果發現以氮化銦為基底的陰離子感測器具有以下的優勢;第一,氮化銦陰離子感測器具有極高的再現性。第二,選擇性只與表面的庫倫作用力有關。第三,反應較迅速。


    InN is a remarkable material for solar cell application in the last few years because the energy band gap of InN is about 0.7 V. Recently, the large intrinsic surface charge accumulation near InN surface is discovered and this phenomenon results in the positively charged surface states. From the chemical of view, such surface states act as the acidic ligands which can adsorb basic ligands. Based on this property, this thesis investigated the sensing property of InN based anion sensor for the acid, salt and base solutions for the first time.
    The results show that there is negative surface potential induced in InN when InN based anion sensor dipping in these solutions. In fact, the sensing responses only depend on the Coulomb interaction on the InN/liquid interface and consist with the charge and potential consist model obviously. Moreover, the charge and discharge behaviors of InN based anion sensor are the same with the capacitor. In addition, the native oxide on the InN surface affects the sensitivity and stability due to the weaker electric attraction.
    The most important of all, InN has the excellent potential for the anion sensor applications for three reasons. First, InN based anion sensor has high repeatability. Second, the selectivity depends on the Coulomb interaction on the surface, not the lipophilicity. Third, the response is faster.

    Abstract I Acknowledgements II List of Illustrations V List of Tables VIII Symbol Definition IX Chapter I: Introduction 1 1.1 Background 1 1.2 Motivation and objective 2 1.3 Organization of this thesis 3 Chapter II: Literature Survey 4 2.1 InN film 4 2.1.1 Fabrication 4 2.1.2 Properties for ion sensor application 6 2.2. Ion-selective electrodes 8 2.2.1 Introduction 8 2.2.2 Ionophore-based anion selective sensor 9 2.2.3 Semiconductor based electrodes 10 2.3 pH-ISFET 12 Chapter III: Theory for InN Based Anion Sensor 15 3.1 Double layers at the InN/liquid interface 15 3.2 The band model of the InN/liquid interface 18 3.3 The potential and charge consistent model 20 Chapter IV: Experiment Setup 24 4.1 System for material analysis 24 4.1.1 SEM 24 4.1.2 SIMS 24 4.1.3 XPS 25 4.2 ISE fabrication 26 4.3 System of surface potential measurement 27 Chapter V: Material Analysis 29 5.1 Nano structures 29 5.2 Surface chemical composition 31 5.3 Surface bonding structure 33 5.4 Summary 37 Chapter VI: Measurement Results 38 6.1 Measurement results of clean InN 38 6.1.1 Sensitivity measurements 38 6.1.2 Repeatability measurements 40 6.1.2.1 Sodium chloride solution 40 6.1.2.2 Sodium hydroxide solution 43 6.1.2.3 Sulfuric acid solution 48 6.1.3 Hysteresis measurements 48 6.2 Measurement results of unclean InN 50 6.2.1 Sensitivity measurements 50 6.2.2 Repeatability measurements 51 Chapter VII: Analysis and Discussion 54 7.1 Response analysis by MATLAB 54 7.1.1 Curve fitting results 55 7.1.2 Comparative analysis 57 7.2 Response analysis by model 59 7.2.1 Sensitivity measurements 59 7.2.1.1 Left hand side region 59 7.2.1.2 Right hand side region 60 7.2.1.3 Potential difference at specific concentration 60 7.2.2 Repeatability measurement 61 7.2.2.1 Adsorption equilibrium 61 7.2.2.2 Release equilibrium 62 7.2.2.3 b in equal concentration variation but different solutions 64 7.3 Discussion 64 7.3.1 Description of sensing responses 64 7.3.2 The effect of oxide 67 7.3.3 Summary 68 Chapter VIII: Conclusion 70 Reference 72

    [1] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Sttutz, “Surface charge accumulation of InN films grown by molecular-beam epitaxy,” Appl. Phys. Lett. Vol, 82, pp.1736-1738, 2004
    [2] H. Lu, W. J. Schaff, and L. F. Eastman, ”Surface chemical modification of InN for sensor applications,” Appl. Phys. Lett, vol. 96, pp.3577-3579, 2004
    [3] I. Mahoboob, T. D. Veal, L. F. J. Piper, and C. F. McConville, H. Lu, W. J. Schaff, J. Furthmüller and F. Bechstedt, “Origin of electron accumulation at wurtzite InN surfaces,” PHYSICAL REVIEW B, vol. 69, pp 201307(R), 2004
    [4] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng. vol. 17, pp.70-71, 1970
    [5] J.C. Chou, and C.Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET,” Materials Chemistry and Physics, vol. 71, pp. 120–124, 2001
    [6] J. C. Chou, and C. N. Hsiao, “Comparison of the pH sensitivity of different surfaces on tantalum pentoxide,” Sensors and Actuators B, vol. 65, pp.237–238, 2000
    [7] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications,” Sensors and Actuators B, vol. 50, pp.104–109, 1998
    [8] S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang, and J. T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett, vol. 84, pp.3765-3767, 2004
    [9] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, W. K. Metzger and Sarah Kurtz, “Superior radiation resistance of In1AxGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. vol. 94, pp.6477-6482, 2003
    [10] H. Freiser, Ion-Selective Electrodes in Analytical Chemistry, vol. 1, New York, 1978
    [11] Ibrahim H. A. Badr, R. D. Johnson, M. Diaz, M. F. Hawthorne, and L. G. Bachas, “A selective optical sensor based on [9] mercuracarborand-3, a new type of ionophore with a chloride complexing cavity,”Anal. Chem. vol. 72, pp.4249-4254, 2000
    [12] M. J. Berrocal, A. Cruz, I. H. A. Badr, and L. G. Bachas, “Tripodal ionophore with sulfate recognition properties for anion-selective electrodes,” Anal. Chem. vol. 72, pp.5295-5299, 2000
    [13] U. Wuthier, H. V. Pham, R, Zünd, D. Welti, R. J. J. Funck, A. Bezegh, D. Ammann, E. Pretsch, and W. Simon,” Tin organic compounds as neutral carriers for anion selective electrodes,” Anal. Chem. vol. 56, pp.535-538, 1984
    [14] N. A. Chaniotakis, K. Jurkschat, and A. Riihlemann,” Potentiometric phosphate selective electrode based on a multidendate-tin (IV) carrier,” Analytica Chimica Acta, vol. 282, pp.345-352, 1993
    [15] D. M. Rudkevich, W. Verboom, Z. Brzozka, M. J. Palys, W. P. R. V. Stauthamer, Gerrit J. van Humme1, S. M. Franken, S. Harkema, Joban F. J. Engbersen, and D. N. Reinhoudt, “Functionalized U02 Salenes: Neutral Receptors for Anions,” J. Am. Chem. Soc, vol. 116, pp.4341-4351, 1994
    [16] P. Bühlmann, E. Pretsch, and E. Bakker, “Carrier based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors,” Chem. Rev, vol. 98, pp.1593-1687, 1998
    [17] N. A. Chaniotakis, Y. Alifragis, A. Georgakilas, and G. Konstantinidis, “GaN-based anion selective sensor: Probing the origin of the induced electrochemical potential,” Appl. Phys. Lett, vol. 86, pp.164103, 2004
    [18] N. A. Chaniotakis, Y. Alifragis, G. Konstantinidis, and A. Georgakila, “Gallium Nitride-Based Potentiometric Anion Sensor,” Anal. Chem. vol. 76, pp.5552-5556, 2004
    [19] Y. G. Vlasov, Y. A. Tarantov, and P. V. Bobrov, “Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors -a critical review,” Anal Bioanal Chem, vol. 376, pp.788-796, 2003
    [20] S. T. Licht, and V. Marcu, ”A Potential and Chargeconsistant model for the adsorption dependence of the semiconductor flatband potential,” ElectronnaI. Chem, vol. 210, pp.197-204, 1986
    [21] S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, New York, 1980

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE