研究生: |
黃啟政 Chi-Cheng Huang |
---|---|
論文名稱: |
氮化銦陰離子感測器 Indium Nitride Based Anion Sensor |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 氮化銦 、陰離子 、感測器 |
外文關鍵詞: | InN, Anion, Sensor |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來因為低能隙(0.7電子伏特)的關係,氮化銦半導體被廣泛應用於太陽能電池上。最近,氮化銦表面附近電荷堆積這個現象被實驗證明及其造成表面為帶正電的表面狀態。依化學的角度來看,表面正電荷可視為酸基,會吸引帶電子的鹼基。基於此項特質,本論文使用氮化銦半導體做為陰離子感測器,並針對酸、鹼、鹽三種水溶液進行感測特性的分析。
結果顯示氮化銦表面在此三種水溶液中皆會產生負電位。更近一步的分析顯示所有的反應行為只跟表面的庫倫作用力有關,並與文獻中的模型相符。另外,未經處理的氮化銦氧化物會減弱表面正電荷造成的電場,進而影響其靈敏度和穩定性。
此研究結果發現以氮化銦為基底的陰離子感測器具有以下的優勢;第一,氮化銦陰離子感測器具有極高的再現性。第二,選擇性只與表面的庫倫作用力有關。第三,反應較迅速。
InN is a remarkable material for solar cell application in the last few years because the energy band gap of InN is about 0.7 V. Recently, the large intrinsic surface charge accumulation near InN surface is discovered and this phenomenon results in the positively charged surface states. From the chemical of view, such surface states act as the acidic ligands which can adsorb basic ligands. Based on this property, this thesis investigated the sensing property of InN based anion sensor for the acid, salt and base solutions for the first time.
The results show that there is negative surface potential induced in InN when InN based anion sensor dipping in these solutions. In fact, the sensing responses only depend on the Coulomb interaction on the InN/liquid interface and consist with the charge and potential consist model obviously. Moreover, the charge and discharge behaviors of InN based anion sensor are the same with the capacitor. In addition, the native oxide on the InN surface affects the sensitivity and stability due to the weaker electric attraction.
The most important of all, InN has the excellent potential for the anion sensor applications for three reasons. First, InN based anion sensor has high repeatability. Second, the selectivity depends on the Coulomb interaction on the surface, not the lipophilicity. Third, the response is faster.
[1] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Sttutz, “Surface charge accumulation of InN films grown by molecular-beam epitaxy,” Appl. Phys. Lett. Vol, 82, pp.1736-1738, 2004
[2] H. Lu, W. J. Schaff, and L. F. Eastman, ”Surface chemical modification of InN for sensor applications,” Appl. Phys. Lett, vol. 96, pp.3577-3579, 2004
[3] I. Mahoboob, T. D. Veal, L. F. J. Piper, and C. F. McConville, H. Lu, W. J. Schaff, J. Furthmüller and F. Bechstedt, “Origin of electron accumulation at wurtzite InN surfaces,” PHYSICAL REVIEW B, vol. 69, pp 201307(R), 2004
[4] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng. vol. 17, pp.70-71, 1970
[5] J.C. Chou, and C.Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET,” Materials Chemistry and Physics, vol. 71, pp. 120–124, 2001
[6] J. C. Chou, and C. N. Hsiao, “Comparison of the pH sensitivity of different surfaces on tantalum pentoxide,” Sensors and Actuators B, vol. 65, pp.237–238, 2000
[7] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications,” Sensors and Actuators B, vol. 50, pp.104–109, 1998
[8] S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang, and J. T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett, vol. 84, pp.3765-3767, 2004
[9] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, W. K. Metzger and Sarah Kurtz, “Superior radiation resistance of In1AxGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. vol. 94, pp.6477-6482, 2003
[10] H. Freiser, Ion-Selective Electrodes in Analytical Chemistry, vol. 1, New York, 1978
[11] Ibrahim H. A. Badr, R. D. Johnson, M. Diaz, M. F. Hawthorne, and L. G. Bachas, “A selective optical sensor based on [9] mercuracarborand-3, a new type of ionophore with a chloride complexing cavity,”Anal. Chem. vol. 72, pp.4249-4254, 2000
[12] M. J. Berrocal, A. Cruz, I. H. A. Badr, and L. G. Bachas, “Tripodal ionophore with sulfate recognition properties for anion-selective electrodes,” Anal. Chem. vol. 72, pp.5295-5299, 2000
[13] U. Wuthier, H. V. Pham, R, Zünd, D. Welti, R. J. J. Funck, A. Bezegh, D. Ammann, E. Pretsch, and W. Simon,” Tin organic compounds as neutral carriers for anion selective electrodes,” Anal. Chem. vol. 56, pp.535-538, 1984
[14] N. A. Chaniotakis, K. Jurkschat, and A. Riihlemann,” Potentiometric phosphate selective electrode based on a multidendate-tin (IV) carrier,” Analytica Chimica Acta, vol. 282, pp.345-352, 1993
[15] D. M. Rudkevich, W. Verboom, Z. Brzozka, M. J. Palys, W. P. R. V. Stauthamer, Gerrit J. van Humme1, S. M. Franken, S. Harkema, Joban F. J. Engbersen, and D. N. Reinhoudt, “Functionalized U02 Salenes: Neutral Receptors for Anions,” J. Am. Chem. Soc, vol. 116, pp.4341-4351, 1994
[16] P. Bühlmann, E. Pretsch, and E. Bakker, “Carrier based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors,” Chem. Rev, vol. 98, pp.1593-1687, 1998
[17] N. A. Chaniotakis, Y. Alifragis, A. Georgakilas, and G. Konstantinidis, “GaN-based anion selective sensor: Probing the origin of the induced electrochemical potential,” Appl. Phys. Lett, vol. 86, pp.164103, 2004
[18] N. A. Chaniotakis, Y. Alifragis, G. Konstantinidis, and A. Georgakila, “Gallium Nitride-Based Potentiometric Anion Sensor,” Anal. Chem. vol. 76, pp.5552-5556, 2004
[19] Y. G. Vlasov, Y. A. Tarantov, and P. V. Bobrov, “Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors -a critical review,” Anal Bioanal Chem, vol. 376, pp.788-796, 2003
[20] S. T. Licht, and V. Marcu, ”A Potential and Chargeconsistant model for the adsorption dependence of the semiconductor flatband potential,” ElectronnaI. Chem, vol. 210, pp.197-204, 1986
[21] S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, New York, 1980