簡易檢索 / 詳目顯示

研究生: 謝長村
Chang-Tsun Hsieh
論文名稱: 磁性尖晶亞鐵礦奈米顆粒及鎳薄膜之磁壁與自旋共振研究
Domain Wall and Spin Resonance Studies of Spinel Ferrite Nanoparticles and Nickel thin films
指導教授: 呂助增
Juh-Tzeng Lue
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 92
語文別: 英文
論文頁數: 136
中文關鍵詞: 電子自旋共振磁性奈米顆粒磁壁量子相變巨觀量子穿隧鎳薄膜
外文關鍵詞: Electron Spin Resonance, Spinel Ferrite Nanoparticles, Domain walls, Quantum Phase Transition, Macroscopic quantum tunneling, nickel thin films
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本篇論文目的是針對磁性薄膜磁區與奈米磁顆粒的物理性質做研究。主要分成兩部分來做探討:(一) 以電子自旋共振研究奈米磁顆粒之量子相變 (二) 在鎳薄膜上以磁力顯微儀觀察磁區之變化。

    Abstract (Chinese) i Abstract (English) iii Acknowledgement Contents Chapter 1 Introduction 1.0 Overview of magnetism 1 1.1 Overview of magnetic nanoparticles 1 1.2 Progresses and challenges 3 1.3 Overview of magnetic thin films 4 1.4 Organization of dissertation 4 References 6 Chapter 2 Theoretical Fundamentals of Magnetic Nanoparticles 2.1 single domain particles and superparamagnetism 9 2.2 Tunneling of the magnetic moment in monodomain ferromagnetic particles 10 2.3 Anisotropy of magnetic nanoparticles 12 2.4 Quantum phase transition 2.4.1 What is a quantum phase transition? 13 2.4.2 Quantum versus classical phase transitions 14 2.4.3 Ising model in the transverse field 15 2.4.4 Heisenberg model with strong easy-plane anisotropy 17 2.4.5 Experimental family of quantum phase transitions 19 References 21 Chapter 3 Experimental Techniques 3.1 Magnetic force microscopy 26 3.2 Fabrication of magnetic nanoparticles (ferrofluids) 27 3.3 Electron paramagnetic resonance 28 3.4 Superconducting quantum interference devices 29 References 30 Chapter 4 Electron Paramagnetic Resonance to Ferromagnetic Resonance in Iron-oxide Nanoparticles 4.1 Introduction 34 4.2 Sample preparation 35 4.3 Electron paramagnetic resonance 36 4.4 Ferromagnetic resonance 39 4.5 Conclusions 42 References 45 Chapter 5 Electron Spin Resonance Studies of Quantum Critical Behavior in Spinel Ferrite Nanoparticles 5.1 Introduction 54 5.1.1 Historical review of SPR spectra in magnetic nanoparticles 56 5.1.2 Imperative for electron paramagnetic resonance 57 5.1.3 Urgent for quantum phase transitions 58 5.1.4 Chapter outline 58 5.2 Conventional superparamagnetic resonance to ferromagnetic resonance in spinel ferrites nanoparticles 59 5.3 Quantum paramagnetic resonance of magnetite nanoparticles at low temperatures 60 5.4 Particle size dependence in magnetite nanoparticles 62 5.5 Quantum paramagnetic resonance of spinel ferrites nanoparticles 63 5.6 Anomalous hyperfine structures in magnetite nanoparticles 64 5.7 Other effects---- 5.7.1 Transverse microwave magnetic field 65 5.7.2 Dipolar interactions 66 5.7.3 Quantum paramagnet at ferrite-organic interface 68 5.8 Summary 69 References 70 Chapter 6 Quantum superparamagnet in CoFe2O4 Nanoparticles 6.1 Introduction 88 6.2 Magnetization measurements 89 6.3 ESR spectra of Co-ferrite nanoparticles 91 6.4 Particle size dependence on QSP 93 6.5 Discussion 95 6.6 Summary 96 References 96 Chapter 7 A High-resolution Magnetic Force Microscopic Study of Domain Walls on Thin Nickel Films 7.1 Introduction 110 7.2 Experimental procedures 111 7.3 Theory 112 7.4 Results and discussion 113 7.5. Conclusion 117 References 118 Chapter 8 Conclusions and Open Questions 8.1 Conclusions of present studies 126 8.2 Suggestions for future work 127 References 128 Autobiographyrf References 1. L. D. Landau and E. M. Lifshitz, Sov. Phys. JETP 8, 153 (1935). 2. J. Frankel, and J. Dorfman Nature 126, 274 (1930). 3. L. Neel, Ann Geophys. 5, 99 (1949). 4. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959). 5. T. Egami, Phys. Status. Solidi A 20, 157 (1973); B. Barbara, G. Fillion, D. Gignoux, and R. Lemaire, Solid State Commun. 10, 1149 (1973); O. Bostanjoglo and H. P. Gemund, Phys. Status Solidi A 17, 115 (1973); 48, 41 (1978); J. A. Baldwin, Jr., F. Milstein, R. C. Wong, and J. L. West, J. Appl. Phys. 48, 2612 (1977); W. Riehenmann and E. Nembach, J. Appl. Phys. 55, 1081 (1984); 57, 476 (1986). 6. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981); Ann. Phys. (N. Y.) 149, 374 (1983). 7. E. M. Chudnovsky, and L. Gunther, Phys. Rev. Lett. 60. 661 (1988); Phys. Rev. B 37, 9455 (1988). 8. M. Enz and R. Schilling, J. Phys. C 19, 1765 (1986). 9. J. L. van Hemmen and A. Suto, Europhys. Lett. 1, 481 (1986); Physica B 141, 37 (1986). 10. J. Tejada and X. X. Zhang, J. Appl. Phys. 73, 6709 (1995); J. Tejada and X. X. Zhang, J. Magn. Magn. 140-144, 1815 (1995). J. Tejada, X. X. Zhang, and E. M. Chudnovsky, Phys. Rev. B 47, 14977 (1993). 11. B. Barbara, W. Wernsdorfer, L. C. Sampaio, J. G. Park, C. Paulsen, M. A. Novak, R. Ferre, D. Mailly, R. Sessoli, A. Caneschi, K. Hasselbach, A. Benoit, and L. Thomas, J. Magn. Magn. Mater. 140-144,1825 (1995). 12. J. I. Arnaudas, A. del Moral, D. de la Fuente, and P. A. J. de Groot, Phys. Rev. B 47, 11924 (1993); M. M. Ibrahim, S. Darwish, and M. S. Seehra, ibid. 51, 2955 (1995). 13.D. D. Awschalom, D. P. DiVincenzo, and J. F. Smyth, Science 258, 414 (1992); S. Gider, D. D. Awschalom, T. Douglas, S. Mann, and M. Chaprala, Science 268, 77 (1995). 14. J. Tejada, Science 272, 424 (1996); A. Garg, ibid. 272,424 (1996); S. Gider, D. D. Awschalom, D. P. DiVincenzo, and D. Loss, ibid. 272, 425 (1996). 15. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature 365, 141 (1993). 16. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996). 17. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature 383,145 (1996). 18. J. M. Hernandez, X. X. Zhang, F. Luis, J. Tejada, J. R. Friedman, M. P. Sarachik, and R. Ziolo, Phys. Rev. B 55, 5858 (1997). 19. C. Paulsen, L. C. Sampaio, R. Tachoueres, B. Barbara, D. Fruchart, A. Marchand, J. L. Tholence, and M. Uehara, J. Magn. Magn. Mater. 116, 67 (1992). 20. X. X. Zhang, J. M. Hernandez, J. Tejada, and R. F. Ziolo, Phys. Rev. B 54, 4101 (1996). 21. J. Tejada, L. Balcells, S. Linderoth, R. Perzynski, B. Barbara, and J. C. Bacri, J. Appl. Phys. 73, 6952 (1993). 22. R. H. Kodama, C. L. Seaman, A. E. Berkowitz, and M. B. Maple, J. Appl. Phys. 75, 5639 (1994). 23. H. J. Mamin, D. Ruger, J. E. Stern, R. E. Fontana, Jr., and P. Kasiraj, Appl. Phys. Lett. 55, 318 (1989). 24. I. L. Prejbeanu, L. D. Buda, U. Ebels, and K. Ounadjela, Appl. Phys. Lett. 77, 3066 (2000). 25. H. N. Lin, Y. H. Chiou, B.M. Chen, H. P. D. Shieh, and Ching-Ray Chang, J. Appl. Phys. 83, 4997 (1998). 26. M. Lohndorf, A. Wadas, H. A. M. van den Berg, and W. Wiesendanger, Appl. Phys. Lett. 68, 3635 (1996). 27. H. S. Cho, C. Hou, M. Sun, and H. Fujiwara, J. Appl. Phys. 85, 5160 (1999) 28. L. J. Heyderman, H. Niedoba, H. O. Gupta and I. B. Puchalska, J. Magn. Magn. Mater. 96, 125 (1991).
    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE