研究生: |
洪嘉壑 Hong, Jia-Huo |
---|---|
論文名稱: |
冪矩陣的常數範數 Constant norms of matrix powers |
指導教授: |
王國仲
Wang, Kuo-Zhong 宋瓊珠 Sung, Chiung-Jue |
口試委員: |
高華隆
Gau, Hwa-Long 蔡明誠 Tsai, Ming-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 14 |
中文關鍵詞: | 冪矩陣 、矩陣範數 、不可約矩陣 |
外文關鍵詞: | matrix powers, matrix norms, irreducible matrix |
相關次數: | 點閱:54 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一$n$階方陣$A$,存在一單位向量$x$使得對所有$k\geq 1$皆滿足 $\|A^kx\|=\|A^k\|=\|A\|$。我們刻畫了符合上述性質的矩陣,其充分必要條件為:矩陣$A$酉相似一2階方塊矩陣$\begin{bmatrix}
B& D\\
0& C
\end{bmatrix}$,其中$B$為符合$B^{*}B=B^{*^{2}}B^{2}$的$r$階方陣,且對所有$k=1,2,\ldots$都有$\| A^k \|= \| B^k \|$。除此之外,我們也刻畫了滿足$A^*A=A^{*^2}A^2$的$n$階方陣$A$。文末,我們給了一個吳培元教授、高華隆教授和王國仲副教授所猜測結果的反例。
For an $n$-by-$n$ matrix $A$, there exists a unit vector $x$ satisfying $\|A^kx\|=\|A^k\|=\|A\|$ for all $k\ge 1$.We give a characterization for such a matrix. A necessary and sufficient for this is unitarily similar to a $2$-by-$2$ block matrix $\begin{bmatrix}
B& D\\
0& C
\end{bmatrix}$, where $B\in M_r$ with $B^{*}B=B^{*^{2}}B^{2}$, and $\| A^k \|= \| B^k \|$ for $k=1,2,\ldots$. Furthermore, we also characterize $n$-by-$n$ matrices which are $A^*A=A^{*^2}A^2$. Finally, we give a counterexample to a conjecture of Gau. et al..
References
[1] Hwa-Long Gau, Kuo-Zhong Wang and Pei Yuan Wu, Constant norms
and numerical radii of matrix powers, Oper. Matrices., 13-4(2019), 1035-1054.
[2] Roger A. Horn and Charles R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
[3] S.-H. Tso and P. Y. Wu, Matricial ranges of quadratic operators, Rocky Mountain J. Math., 29(1999), 1139–1152.
[4] V. PT ´AK, Lyapunov equations and Gram matrices, Linear Algebra
Appl., 49(1983), 33-55.