研究生: |
林昭銘 Chao-Ming Lin |
---|---|
論文名稱: |
使用特定領域的詞彙集與本體論回答簡單的歷史問題 Answer Simple Historical Questions Using Domain-Specific Thesaurus and Ontology |
指導教授: |
蘇豐文
Von-Wun Soo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 詞彙集 、本體論 、知識共享 、知識重複使用 、語意網 |
外文關鍵詞: | Thesaurus, Ontology, Query Schema, RDF/RDFS, Semantic Web, knowledge sharing and reusing |
相關次數: | 點閱:86 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有的收尋引擎幾乎都是使用關鍵字比對(Keyword-Matching)的技術,作為檢索的方式。傳統的關鍵字比對技術只是單純利用字彙在語法上的比對,而忽略其在語意上的比對,也就是使用者必須使用相同的字詞,才能找到所需的資訊。但隨著資訊源的快速成長,其檢索的結果會產生較低的精準度。在此我們應用詞彙集(Thesaurus)及本體論(Ontology)所表達的特定領域知識與略圖(Schema),來提供使用者查詢的方式,幫助系統了解使用者提出的查詢問題,並且希望能針對使用者的問題,有精確的答案產生。
這篇論文提出一個系統以歷史領域的詞彙表及本體論為基礎的查詢問題機制,並且提供較關鍵詞比對好的機制。我們利用本體論來表示領域知識,讓使用者藉由查詢略圖(Query Schema)的幫助之下,能夠提出簡單的歷史問題。系統中利用詞彙集中所表達的知識來幫助系統了解使用者的查詢中的語意。根據查詢問題,系統可以從特定的資訊源取出資訊,並且提供給使用者一個精確的答案。
我們也利用RDF/RDFS的架構來表達本體論中所內含的領域知識與關係,希望讓其他的研究人員可以更容易地了解已建構的知識結構,因此達到本體論能夠被共享與重複使用的目的。
[1]DAML+OIL, http://www.daml.org/2001/03/daml+oil-index.html
[2]Ontobroker, http://ontobroker.aifb.uni-karlsruhe.de/index_ob.html
[3]Ontosaurus, http://mozart.isi.edu:8003/sensus2/banner.html
[4]RDF, Resource Description Framework, http://www.w3.org/RDF/
[5]RDFS, Resource Description Framework Schema Specification 1.0, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
[6]T. Brasethvik, and J. A. Gulla, “Natural Language Analysis for Senmatic Document Modeling”, Data & Knowledge Engineering, March, 2001, pp. 45-62
[7]N. Chomsky, “Lectures on government and binding”, Dordrecht, Netherlands: Foris Publications.
[8]S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, I. Horrocks, “The Semantic Web: the roles of XML and RDF” IEEE Internet Computing, Volume: 4 Issue: 5, Sept-Oct 2000 pp. 63 –73
[9]D. W. Embley, D. M. Campbell, and R.D. Smith, “Ontology-Based Extraction and Structuring of Information from Data-Rich Unstructured Documents”, CIKM'98 Proceedings.
[10]N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen, “Creating Semantic Web Contents with Protege-2000”, IEEE Intelligent Systems, March-April, 2001, pp. 60 –71
[11]N. F. Noy, R. W. Fergerson, and M. A. Musen, “The Knowledge Model of Protege-2000: Combining Interoperability and Flexibility”, 2th International Conference on Knowledge Engineering and Knowledge Management (EKAW'2000), Juan-les-Pins, France, 2000
[12]D. Fensel, “Ontologies and Electronic Commerce”, IEEE Intelligent Systems, Jan-Feb, 2001, pp. 8 –14
[13]T. R. Gruber, “A Translation Approach to Portable Ontology Specifications”, 1993, (KSL-92-71)
[14]F. C. Han, “Qin-Han-Shi”(history of Qin and Han Dyansty), NOU Published, 1996
[15]J. Hendler, “Agents and the Semantic Web”, IEEE Intelligent Systems, March-April, 2001, pp. 30-37
[16]J. T. Kim and D. I. Moldovan, “Acquisition of Linguistic Patterns for Knowledge-Based Information Extraction”, IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No, 5, Oct 1995
[17]R. L. Liu, and V. W. Soo, “Explanation-Based Natural Language Acquisition Using Universal Linguistic Principles As Innate Domain Theory”, Applied Artificial Intelligence, 8:459-481, 1994.
[18]C. Y. Lin, “Ontology-based Content Retrieval in a Multi-Agent System for Digital Library”
[19]A. Maedche, and S. Staab, “Ontology Engineering beyond the Modeling of Concepts and Relations”, 14th European Conference on Artificial Intelligence Workshop on Applications of Ontologies and Problem-Solving Methods (ECAI 2000)
[20]A. Maedche, and S. Staab, “Ontology Learning for the Semantic Web”, IEEE Intelligent Systems, Mar-Apr, 2001, pp. 72 –79
[21]C. Mei, Y. Chu, Y. Kao, and H. Ying, "Tong-Yi-Tse-Tse-Lin" (Chinese Synonym Thesaurus), Dong Hwa Publishers, 1993
[22]A. G. Perez, and O. Corcho, “Ontology Languages for the Semantic Web”, IEEE Intelligent Systems, Jan-Feb, 2002, pp. 54-60
[23]B. G. Silverman, M. Bachann, and K. Al-Akharas, “Do What I Mean: Online Shopping with a Natural Language Search Agent”, IEEE Intelligent Systems, July-Aug, 2001, pp. 48 –53