簡易檢索 / 詳目顯示

研究生: 陳俊儒
Chen Chun-Ju
論文名稱: 利用Microdialysis-DIN-ICP-MS連線分析系統測定生物活體中銅及鋅元素之研究
Quantitative In-Vivo Monitoring of Cu and Zn Using Microdialysis-DIN-ICP-MS On-Line System
指導教授: 楊末雄
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
畢業學年度: 87
語文別: 中文
論文頁數: 76
中文關鍵詞: 微透析直接導入霧化器感應耦合電漿質譜儀連線生物活體
外文關鍵詞: microdialysis, DIN, ICP-MS, on-line, in-vivo, Cu, Zn
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發微透析取樣配合直接導入霧化-感應耦合電漿質譜儀 ( Microdialysis-DIN-ICP-MS ) 之連線分析系統,並探求其應用於活體動物中銅及鋅元素的可行性。
    首先建立DIN-ICP-MS分析系統探求各項儀器參數的最適化操作條件,並以微透析灌流液( Ringer試劑 )驗證方法的可行性。研究中自行組裝不含金屬的進樣器( PEEK針頭 ),證實可有效地降低污染導入。在質譜的測定上,為避免Cu63受到Ar40Na23的干擾,選擇Cu65進行質譜測定。研究中使用內標準法以改善基質效應對精密度的影響。為確認方法的可靠性,以ICP-MS及DIN-ICP-MS就同一真實樣品進行方法間的比對,由兩者結果頗相一致的事實顯示本方法具有相當的可靠性。

    其次將微透析裝置與上述的DIN-ICP-MS系統連線,建立一套可適用於活體的分析系統。首先以動物活體的離線方式,探討灌流液流速對回收率的影響,尋求最適的樣品流速。其次模擬活體內腦組織的特性,配製不同銅鋅濃度的人造腦脊髓液,製備校正曲線。最後以本系統實際應用於活體動物中微量銅及鋅元素的測定。

    本研究所建立之Micordialysis-DIN-ICP-MS分析系統,對於活體中銅及鋅的分析,其偵測極限分別可低達30及12 ng/mL,分析的精密度約為15%以內 ( 196 ng/mL ),分析時間約為10分鐘。此系統除了具有微小化樣品之微量分析 ( micro-trace analysis ) 的特性外,亦可提供活體動物中微量元素的即時,動態及連續的訊息。


    A method for the determination of trace levels of Cu and Zn in vivo using microdialysis coupled on-line with direct injection nebulization and inductively coupled plasma mass spectrometry ( Microdialysis-DIN-ICP-MS ) has been developed and optimized. The operation parameters of the DIN-ICP-MS system were first optimized with the use of ringer reagent, the perfusate used for microdialysis, to obtain maximum achieveable sensitivity and precision, and minimum interference caused by the matrix substances. A notably high blank resulted most probably from the sample injection system was suppressed pronouncedly by the use of a homemade PEEK syringe system, and the spectral interference for the measurement of Cu ( m/z=63 ) caused by 40Ar23Na was eliminated effectively by the measurement of 65Cu. The signal suppression by the matrix components could be corrected with the use of yittrium as an internal standard. After the establishment of DIN-ICP-MS system, the microdialysis was on-line coupled to it to form a continuous in vivo analytical system for the determination of Cu and Zn in animals. The effect of perfusate rate on the recovery of analyts was first investigated. The calibration curve was subsequently prepared with the use of artificial cerebral spinal fluid, as a simulating brain tissue, based on the optimized experimental condition. With the use of the established microdialysis-DIN-ICP-MS system, the detection limits down to ng/mL levels, with relative standards deviation of ≦10%, could be achieveable. The on-line analytical system is proved to be useful that is capable of near-real-time analysis of Cu and Zn with a temporal resolution of less than 10 min in anesthetized or awake, freely moving animals.

    第一章前言………………………………………………………………….1 1.1分析化學在生物醫學研究上的重要性…………………………………………..1 1.2生物醫學分析中取樣技術之發展………………………………………………..2 1.3微小化樣品分析技術的發展……………………………………………………..3 1.4研究目的…………………………………………………………………………..5 第二章儀器及分析原理…………………………………………………….7 2.1感應耦合電漿質譜儀分析法(ICP-MS)…………………………………………..7 2.1.1感應耦合電漿離子源(ICP as ion source)………………………….…………7 2.1.2離子萃取(Ion extraction)……………………………………………….……..9 2.1.3離子聚焦(Ion focusing)……………………………………………….………9 2.1.4四極式質量分析器(Quardrupole mass analyzer)…………………………...10 2.1.5離子偵測(Ion detection)……………………………………………….…….10 2.1.6感應耦合電漿質譜儀的分析特性與限制……………………………….….12 2.2直接導入式霧化器(Direct injection nebulizer, DIN)……………………………13 2.3微透析(Microdialysis)取樣法…………………………………………………...14 第三章實驗部份…………………………………………………………...17 3.1DIN-ICP-MS分析系統…………………………………………………………..17 3.1.1儀器裝置……………………………………………………………………..17 3.1.2實驗環境……………………………………………………………………..17 3.1.3實驗試劑及用水……………………………………………………………..17 3.1.4容器清洗……………………………………………………………………..18 3.1.5灌流液林格試劑(ringer)的配製……………………………………………..19 3.1.6人工腦脊髓液(artifical cerebral spinal fluid)的配製………………………..19 3.1.7DIN-ICP-MS分析系統的建立………………………………………………19 3.1.8實驗流程……………………………………………………………………..19 3.2微透析取樣系統…………………………………………………………………21 3.2.1儀器裝置……………………………………………………………………..22 3.2.2微透析(microdialysis)取樣系統的建立……………………………………..22 3.2.3實驗流程……………………………………………………………………..22 3.3Microdialysis-DIN-ICP-MS分析系統…………………………………………...23 3.3.1 Microdialysis-DIN-ICP-MS連線分析系統的建立…………………………23 3.3.2實驗流程……………………………………………………………………..24 第四章結果與討論………………………………………………………...25 4.1利用DIN-ICP-MS分析系統進行銅及鋅元素的分析…………………………25 4.1.1儀器最適化操作條件探討…………………………………………………..25 4.1.2污染控制的探討……………………………………………………………..28 4.1.3干擾效應的探討……………………………………………………………..30 4.1.4分析方法的可靠性…………………………………………………………..33 4.2微透析取樣系統對銅及鋅回收率的影響因素…………………………………35 4.2.1污染控制的探討……………………………………………………………..35 4.2.2微透析取樣回收率之探討…………………………………………………..37 4.3以Microdialysis-DIN-ICP-MS進行生物活體中銅及鋅元素的分析………….38 第五章結論………………………………………………………………...41 第六章參考文獻…………………………………………………………...4

    1. T. D. Lyon, G. S. Fell, J. Anal. At. Spectrom., 3, 265 (1988).
    2. C. E. Lunte and D. O. Scott, Anal. Chem., 63, 773A (1991).
    3. Y. Zhao, X. Liang, and C. E. Lunte, Anal, Chim. Acta, 316, 403 (1995).
    4. P. Lonnroth and U. Smith, J. Int. Med., 227, 295 (1990).
    5. F. C. Cheng, L. L. Yang, F. M. Chang, L. G. Chia, and J. S. Kuo, J. Chromatogr., 582, 19 (1992).
    6. R. A. Gazzara, S. L. Andersen, J. Neurochem., 62, 1741 (1994).
    7. N. Javelle, B. Renaud, and L. Lambas, J. Neurochem., 68, 683 (1997).
    8. Mendlin, F. J. Martin, L. E. Rueter, and B. L. Jacobs, J. Neurochem., 67, 617 (1996).
    9. M. G. Boutelle, L. K. Fellows, and C. Cook, Anal. Chem., 64, 1790 (1992).
    10. Chem and C. E. Lunte, J. Chromatogr. A., 291, 29 (1995).
    11. W. H. Church and J. B. Justic, Anal. Chem., 59, 712 (1987).
    12. M. Pravda, L. Bogaert, S. Sarre and G. Ebinger, Anal. Chem., 69, 2354 (1997).
    13. P. Lonnroth, J. Carlsten, L. Johnson, and U. Smith, J. Chromatogr., 568, 419 (1991).
    14. Vercruysse, "Evaluation of analytical methods in biological system. Part A: Hazardous metals in human toxicology", Elsevier (1984).
    15. Vandecasteele, H. Vanhoe and R. Dams, J. Anal. Atom. Spectrosc., 8, 781 (1993).
    16. 藍啟仁、黃傳捷、楊末雄,科儀新知第十五卷第五期第四十九頁頁民國八十三年。
    17. N. I. Ward, F. R. Abou-Shakra and S. F. Durrant, in "Biological trace element research", 177, ACS (1990).
    18. K. E. Jarvis, A. L. Gray and R. S. Houk, "Handbook of inductively coupled plasma mass spectrometry", Blackie (1992).
    19. R. Data and A. L. Gray, "Applications of inductively coupled plasma mass spectrometry", Blackie (1989).
    20. J. Sneddon, "Sample Introduction in Atomic Spectroscopy", Elsevier Science Publisher, New York (1990).
    21. V. A. Fassel and B. R. Bear, Spectrochim. Acta., 41B, 1089 (1986).
    22. J. M. Carey, F. A. Byrdy, and J. A. Caruso, J. Chromatogr. Sci., 31, 330 (1993).
    23. K. E. Lawrence, G. W. Ride, and V. A. Fassel, Anal. Chem., 56, 292 (1984).
    24. R. Wiederin, F. G. Smith and R. S. Houk, Anal. Chem., 63, 219 (1991).
    25. K. E. LaFreniere, V. A. Fassel and D. E. Eckels, Anal. Chem., 59, 879 (1987).
    26. F. Vanhaecke, M. van Holderbeke, L. Moens, and R. Dams, J. Anal. At. Spectrom., 11, 543 (1996).
    27. S. D. Lofthouse, G. M. Greenway and S. C. Stephen, J. Anal. At. Spectrom., 12, 1373 (1997).
    28. S. Augagneur, B. Medena, J. Szpunar, and R. Lobinski, J. Anal. At. Spectrom., 11, 713 (1996).
    29. S. A. Pergantis, E. W. Heithmar and T. A. Hinners, Anal. Chem., 67, 4530 (1995).
    30. H. Liu, A. Montaser, S. P. Dolan, and R. S. Schwartz, J. Anal. At. Spectrom., 11, 307 (1996).
    31. S. H. Nam, J. S. Lim and A. Montaser, J. Anal. At. Spectrom., 9, 1357 (1994).
    32. S. Saverwyns, X. Zhang, F. Vanhaceke, R. Cornelis, L. Moens, and R. Dams, J. Anal. At. Spectrom., 12, 1047 (1997).
    33. M. W. Raynor, G. D. Dawson, M. Balcerzak, W. G. Pretorius, and L. Ebdon, J. Anal. At. Spectrom., 12, 1057 (1997).
    34. M. W. Raynor, K. D. Bartle and B. W. Cook, J. High Resolut. Chromatogr., 15, 361 (1992).
    35. J. A. McLean, H. Zhang, and A. Montaser, Anal. Chem., 70, 1012 (1998).
    36. L. Wang, S. W. May, R. F. Browner, and S. H. Pollock, J. Anal. At. Spectrom., 11, 1137 (1996).
    37. R. W. Kirlew and J. A. Caruso, Appl. Spectrosc., 52, 770 (1998).
    38. M. J. Powell, E. S. K. Quan, D. W. Boomer, and D. R. Wiederin, Anal. Chem., 64, 2253 (1992).
    39. F. G. Smith, D. R. Wiederin, R. S. Houk, C. B. Egan, and R. E. Serfass, Anal. Chim. Acta., 248, 229 (1991).
    40. J. Szpunar, J. Bettmer, M. Robert, H. Chassaigne, K. Gemmann, R. Lobinski, and O. F. X. Donard, Talanta., 44, 1389 (1997).
    41. W. S. Chao and S. J. Jiang, J. Anal. At. Spectrom., 13, 1337 (1998).
    42. H. G. Seiler, A. Sigel, and H. Sigel, "Handbook on Metals in Clinical and Analytical Chemistry", Marcel Dekker, Inc., New York (1994).
    43. K. E. Jarvis, A. L. Gray and R. S. Houk, "Handbook of inductively Coupled Plasma Mass Spectrometry", Blackie, Glasgow (1992).
    44. K. Hunter, At. Spectrosc., 15, 17 (1994).
    45. 黃立心、林金全,科儀新知第二十卷第一期第五頁頁民國八十七年。
    46. M. I. Davies, Anal. Chim. Acta., 397, 227 (1999).
    47. Y. Zhao, X. Liang, and C. E. Lunte, Anal. Chim. Acta., 316, 403 (1995).
    48. D. R. Wiederin and R. S. Houk, Appl. Spectrosc., 45, 1408 (1991).
    49. M. Zief and J. W. Mitchell, "Contamination Control in Trace Element Analysis", John Wiley and Sons, New York (1976).
    50. C. Vandecasteele and C. B. Block, "Modern Methods for Trace Element Determination", John Wiley and Sons, New York (1993).
    51. S. E. Hobbs and J. W. Olesik, Anal. Chem., 64, 274 (1992).
    52. J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu, and D. W. Choi, Science., 272, 1013 (1996).
    53. S. L. Sensi, L. M. T. Canzoniero, S. P. Yu, H. S. Ying, J. Y. Koh, G. A. Kerchner, and D. W. Chio, J. Neurosci., 17, 9554 (1997).
    54. J. H. Weiss, D. M. Hartlev, J. Y. Koh. And D. W. Chio, Neuron., 10, 43 (1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE