研究生: |
林延澤 Lin, Yen-Tse. |
---|---|
論文名稱: |
運用六標準差與實驗設計改善太陽能電池電致發光不良率 Apply Six Sigma and Experimental Design to Reduce the Defect Rate of Electroluminescence in Solar Cells |
指導教授: |
邱銘傳
Chiu, Ming-Chuan |
口試委員: |
劉建良
Liu, Chien-Liang 郭財吉 Kuo, Tsai-Chi 徐昕煒 Hsu, Hsin-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 六標準差 、實驗設計 、太陽能電池 、電致發光 |
外文關鍵詞: | Six Sigma, Design of Experiment, solar cells, Electroluminescence |
相關次數: | 點閱:109 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能電池的瑕疵種類繁多,任何瑕疵都有可能降低電池的光電轉換效率,使整個太陽能系統的發電效率受到影響。所有類型瑕疵中,以出現在電池內部的隱裂及汙染缺陷最為關鍵。可見光並無法查覺隱藏於電池內部的瑕疵,因此最不容易被檢查出來。電致發光(Electroluminescence, EL)技術最常被用來檢查太陽能電池的內在缺陷,本研究為找出電致發光缺陷發生的真正原因,提高生產的良率及降低客訴率,使品質能與其他公司競爭,電致發光缺陷改善是太陽能電池製造商優先要改善的項目之一。
本研究利用六標差管理系統的界定、衡量、分析、改善、控制(Define-Measure-Analyze- Improve-Control)DMAIC改善流程,針對太陽能電池電致發光不良率進行改善,在界定階段確定改善方向在生產製程,在衡量階段定義透過柏拉圖列出前兩大的電致發光缺陷,於分析階段用要因分析圖找出可能因子
,改進階段以實驗設計(Design of Experiment, DOE)找出最佳製程參數並進行放量確認,控制階段將實驗所得之最佳製程參數製作作業標準書,投入各機台平行展開進行量產,電致發光不良率由原先超過3,000ppm能夠下降至1,000ppm以下,電致發光不良率改善達50%以上。電致發光不良率改善後,讓個案公司的太陽能電池發電效率與良率也同步有所提升,再加上降低客訴比例,減少客訴產生的退換貨及重工作業成本下降,改善後總效益平均每個月金額322萬。
There are various types of defects in solar cells and these defects may reduce the photoelectric conversion efficiency of the battery and affect the power generation efficiency of the entire solar system. The cracks appearing inside the battery and pollution defects are the most critical among all types of defects. However, visible light is difficult to determine the hidden defect of inside the battery. Therefore, Electroluminescence (EL) technology is applied to examine the internal defects of solar cells.
In this study, DMAIC (Define-Measure-Analyze- Improve-Control) of Six Sigma framework is utilized. The improvement direction of production is defined according to the Define stage, and then the Measure phase lists top two electroluminescence defects in accordance with the Pareto chart. Further, the potential factors are figured out using cause and effect analysis chart at Analyze stage. The Design of Experiment (DOE) enables determining the optimal process parameters and confirms to scale up production in Improve stage. Finally, the standard operation procedure is prepared according to optimal process parameters obtained from experiments and the mass production is performed on parallel development of machines at Control stage.
The defect rate for electroluminescence has at least 50% improvement. After the improvement of electroluminescence, the power generation efficiency of solar cell and yield rates in the case company have been enhanced. In addition, the customer complaints and the cost of returning/replacing are effectively reduced to save 3.22 million NTD per month in the case company.
中文部分
1. 元晶太陽能科技股份有限公司 (無日期),檢自
http://www.tsecpv.com/zhtw/solar_knowledge/index/zero_house_02
2. 集邦新能源網 (2018),PERC太陽能電池原理、技術、生產流程、工藝流程詳解!,檢自https://kknews.cc/zh-tw/science/grvn2ne.html
3. 吳鴻森工研院測量中心 (2018),PV 電站檢測技術與模組失效分析實例
4. 財團法人工業技術研究院 (2016),研究機構能源科技專案105年度執行報告-高性能太陽光電系統技術研發計畫報告
5. 喬治.艾克斯;朱靜女譯 (2006),實踐六準標差-活用標竿企業經驗、執行最佳六標準差,美商麥格羅希爾國際股份有限公司台灣分公司, ISBN 9789861572475
6. 羅芬芳 (2018),運用六標準差改善觸控面板玻璃品質-以A公司為例,元智大學工業工程與管理研究所碩士論文
7. 彼得.潘迪;羅伯.紐曼;羅蘭.卡法那夫合著;樂為良譯 (2002),六標準差團隊實戰指南,美商麥格羅希爾國際股份有限公司台灣分公司,ISBN 9789574936342
8. 麥可.喬治;大衛.羅蘭;馬克.普萊斯;約翰.馬西合著;丁惠民譯 (2006),精實六標準差工具手冊,美商麥格羅希爾國際股份有限公司台灣分公司,ISBN 9789861572857
9. 張華明著(2016),能源經濟理論與實踐,中國財政經濟出版社,ISBN9787509572306
10. 嚴瑞吉 (2017),應用六標準差降低庫存-以W公司為例,清華大學工業工程與工程管理學系碩士論文
11. 黃鴻偉 (2015),應用六標準差於測量工程品質改善之研究,中興大學土木工程學系碩士論文
12. 芭芭拉.蕙特;喬克.米爾斯;麥克.卡奈爾合著,夏荷立譯 (2003),精實六標準差成功案例分享,美商麥格羅希爾國際股份有限公司台灣分公司,ISBN 9789574937806
13. 陳林宏 (2016),應用六標準於應用模組產品之開發設計-以全球衛星定位導航系統模組產業為例,明新科技大學工業工程與管理系碩士論文
14. 陳銘淇 (2016),運用六標準差提升TFT-LCD之ODF產線,逢甲大學工業工程與系統管理學系碩士論文
15. 黃振豐 (2015),應用精實六標準差於生產零缺失管理之研究-以鋁質電容製造公司為例,中興大學管理學院高階經理人碩士在職專班碩士論文
16. 雷承融 (2016),運用六標準差於觸控面板玻璃成形時間改善,逢甲大學工業工程與系統管理學系碩士論文
英文部分
1. Al-Zain Y., Al-Fandi L., Arafeh M., Salim S., Al-Quraini S., Al-Yaseen A. and Abu Taleb D., (2019) “Implementing lean Six Sigma in a Kuwaiti private hospital” International Journal of Health Care Quality Assurance, 32(2), 431-446.
2. Andersson R., Eriksson H. and Torstensson H., (2006) “Similarities and differences between TQM, Six Sigma and lean”, The TQM Magazine, 18(3), 282-296.
3. Antony J. and Banuelas R., (2001) “Six Sigma: a strategy for survival”, Manufacturing Engineer, 80(3), 119–121.
4. Arafeh M., Barghash M. A., Haddad N., Musharbash N., Nashawati D., Al-Bashir A. and Assaf F., (2018) “Using Six Sigma DMAIC Methodology and Discrete Event Simulation to Reduce Patient Discharge Time in King Hussein Cancer Center”, J Healthc Eng, 2018, 3832151.
5. Basak P. and Thakkar J. J., (2018) “Application of DMAIC to Reduce Gas Leakage from Compressor”, International Journal of Mechanical and Production Engineering, 6(10), 11-15.
6. Bendell T., (2006) “A review and comparison of Six Sigma and the lean organisations”, The TQM Magazine, 18(3), 255- 262.
7. Brakels R., (2017) “What is a PERC Solar Panel ?” Retrieved from https://www.solarquotes.com.au/blog/perc-solar-panel/
8. Costa J. P., Lopes I. S. and Brito J. P., (2019) “Six Sigma application for quality improvement of the pin insertion process”, Procedia Manufacturing, 38, 1592–1599.
9. Cronemyr P., (2007) “DMAIC and DMADV differences, similaritiesand synergies”, International Journal of Six Sigma and Competitive Advantage, 3(3), 193–209.
10. Deeb S., Haouzi H. El, Aubry A. and Dassisti M., (2018) “A generic framework to support the implementation of Six Sigma approach in SMEs”, IFAC -PapersOnLine, 51(11), 921-926.
11. de Mast J., and Bisgaard S., (2007) “The science in Six Sigma”, Quality Progress, 40(1), 25-29.
12. Dinulescu R., Smeureanu I., Dobrin C. and Popa I., (2018) “A statistical approach for improving the romanianpublichealthcare system using the LEAN Six Sigma methodology”, Economic Computation and Economic Cybernetics Studies and Research, 52(3), 55-72.
13. Dora M. and Gellynck X., (2015) “Lean Six Sigma Implementation in a Food Processing SME: A Case Study”, Qual. Reliab. Engng. Int., 31, 1151–1159.
14. Girmanová L., Šolc M., Kliment J., Divoková A. and Mikloš V., (2017) “Application of Six Sigma Using DMAIC Methodology in the Process of Product Quality Control in Metallurgical Operation”, Acta Technologica Agriculturae, 20(4), 104-109.
15. Harry M. and Crawford D., (2005) “Six sigma - The next generation”, Machine Design, 77(4), 126 -130.
16. Harry M. and Schroeder R., (2006) “Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations”, Doubleday, New York, NY, ISBN 9780385494373.
17. Henderson K. M. and Evans J. R., (2000) “Successful implementation of Six Sigma: benchmarking general electric company”, Benchmarking: An International Journal, 7(4), 260–282.
18. Hung H. C. and Sung M. H., (2016) “Applying LEAN Six Sigma to reduce production cycle time: An empirical study in the TFT-LCD industry”, Journal of Quality, 23(4), 228-247.
19. Janice L. and Lee P. D., (2007) “Applying Six Sigma and DMAIC to diversity initiatives”, Journal of Healthcare Management, 52(6), 361-367.
20. Jirasukprasert P., Garza-Reyes J. A., Kumar V. and Lim M. K., (2014) “A Six Sigma and DMAIC application for the reduction of defects in a rubber gloves manufacturing process”, International Journal of Lean Six Sigma, 5(1), 2-21.
21. Krafcik J. F., (1988) “Triumph of the lean production system”, Sloan Management Review, 30(1), 41-51.
22. Kwak Y. H. and Anbari F. T., (2006) “Benefits, obstacles, and future of Six Sigma approach”, Technovation, 26(5-6), 708-715.
23. Li P., Jiang P. and Zhang G., (2019) “An enhanced DMAIC method for feature-driven continuous quality improvement for multi-stage machining processes in one-of-a-kind and small-batch production”, IEEE Access, 7, 32492-32503.
24. Linderman K., Schroeder R. G., Zaheer S., and Choo A. S., (2003) “Six Sigma: a goal-theoretic perspective”, Journal of Operations Management, 21(2), 193-203.
25. Mohamad N., Ahmad S., Samat H. A., Seng C. K. and Lazi F. M. (2019) “The Application of DMAIC to improve production: case study for single-sided flexible printed circuit board”, IOP Conf. Series: Materials Science and Engineering,530, 012041.
26. Pereira M. T., InêsBentoa M., Ferreira L. P., Sá J. C. and Silva F. J. G., (2019) “Using Six Sigma to analyse Customer Satisfaction at the product design and development stage”, Procedia Manufacturing, 38, 1608–1614.
27. Randell E. W., Short G., Lee N., Beresford A., Spencer M., Kennell M., Moores Z. and Parry, D., (2018) “Strategy for 90% autoverification of clinical chemistry and immunoassay test results using Six Sigma process improvement”, Data in brief, 18, 1740-1749.
28. Stankalla R., Chromjakova F. and Koval O., (2019) “A review of the Six Sigma belt system for manufacturing small and medium-sized enterprises”, Quality Management Journal 26(2) 100-117.
29. Syahputri K., Sari R. M., Anizar, Tarigan I. R. and Siregar I., (2018) “Application of lean Six Sigma to waste minimization in cigarette paper industry”, IOP Conference Series: Materials Science and Engineering 309(1), 012027.
30. Womack J. P. and Jones D. T., (1996) “Lean thinking”, Simon and Schuster, New York, NY, ISBN 9780684810355.