簡易檢索 / 詳目顯示

研究生: 黃裕升
論文名稱: 藉由控制電雙層疊合機制以達到低耗能高效率之去鹽淡化裝置
A Desalination device of High Efficiency and Low Power Consumption by Controlling Electrical-Double-Layer overlapping
指導教授: 曾繁根
口試委員: 闕郁倫
楊瑞珍
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: 電雙層陽極氧化鋁海水淡化
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據經濟合作與發展組織(Organization for Economic Co-operation and Development, OECD)及聯合國(United Nations, UN)的指出,有0.35億人面臨著水資源短缺的困境,人數約為三分之一,且到了2025年時將會有三分之二以上的人口會遭遇水資源缺乏的問題。
    此論文中將會利用在奈米通道中控制電雙層厚度(electro-double-layer, EDL)來阻絕液體中的離子通過通道。本實驗中在陽極氧化鋁(Anodic Aluminum Oxide, AAO)奈米流道中結合利用原子層沉積技術來製做出同時具有高介電強度以及高均勻性的絕緣材料(HfO2)做為利用靜電力來控制奈米流道中的電雙層厚度技術,此設計相比於逆滲透(reversal osmosis, RO)及電滲流(eletrodialysis, ED)過濾水中離子有更好的能量效率以及產率。
    本論文已達到利用EDL控制的方式可以有效的減少鹽水的濃度由原本的(NaCl 1M),在經過十二個小時被動式的淡化反應之後濃度可大幅度降低,且阻擋離子之效果約為55%,與理論上篩選單一離子效率應為50%接近,並且利用外加幫浦使其流量加速,並且發現其效率約為30%,由此結果可知,利用此方法可以有效的阻絕離子通過奈米通道,並經由多重薄膜結合之方法,藉此發展出另一種可淡化機制及可攜帶式裝置。


    The Organization of Economic Cooperation and Development (OECD) and the United Nations have reported that 0.35billion people are currently suffering from water shortage. Over one-third of world’s population lives in water-stressed countries and it will be rose two-thirds in 2025.
    This paper proposes to manipulate the thickness of the electro-double-layer (EDL) inside the anodic aluminum oxide (AAO) nanochannels as virtual filter to select uni-ions for desalination through electrical static charges. Due to the electric static sieving effect at larger channel diameter (~100 nm), the power consumption is much less than those by tradition methods, such as reverse-osmosis (RO) and electrodialysis (ED) which need to function in much smaller nano pores or channels of 1 nm.
    This design has been demonstrated that the concentration of the salt water can be reduced about 55%, which is closed 50% in theory. By pumping flow system to increase flow rate, the desalination rate is about 30%. According to the result, the EDL overlapping could repulse ions passing through nanochannels. Finally, we want to develop another desalinated and portable device.

    摘要……………………………………………………………………………………I 總目錄………………………………………………………………………………...II 圖目錄………………………………………………………………………………..IV 表目錄………………………………………………………………………………..VI 第一章 緒論……………………………………………………………………………1 1.1 研究背景…………………………………………………………………..1 1.2 海水淡化發展過程………………………………………………………..2 1.3 研究動機…………………………………………………………………..3 第二章 文獻回顧………………………………………………………………………5 2.1 淡化機制…………………………………………………………………..5 2.2 蒸發法……………………………………………………………………..6 2.2.1 多級蒸發法(MED)……………………………………………………..6 2.2.2 多級閃化法(MSF)……………………………………………………..7 2.2.3 MED及MSF比較……………………………………………………….9 2.2.4 蒸氣壓縮蒸餾法………………………………………………………9 2.2.5 太陽能蒸發法………………………………………………………..11 2.3 薄膜法……………………………………………………………………12 2.3.1 逆滲透法……………………………………………………………13 2.3.2 電透析………………………………………………………………16 2.3.3 薄膜蒸餾……………………………………………………………18 2.4 其他方法…………………………………………………………………20 2.4.1 沸石…………………………………………………………………20 2.4.2 碳管…………………………………………………………………21 2.4.3 電容去離子法………………………………………………………21 2.5 綜合比較…………………………………………………………………22 2.5.1 造水率及使用率……………………………………………………22 2.5.2 成本…………………………………………………………………23 第三章 實驗設計與流程…………………………………………………………25 3.1 電雙層原理………………………………………………………………25 3.2 實驗儀器…………………………………………………………………29 3.3 實驗原理…………………………………………………………………35 第四章 結果與討論………………………………………………………………37 4.1 第一代設計(passive mode with electrochemistry) ………………..37 4.2 第二代設計(passive mode with conductivity meter) ……………...41 4.3 試片TEM及SEM圖………………………………………………………46 4.4 第三代設計(active mode with pump) ……………………………….48 第五章 結論………………………………………………………………………55 第六章 未來工作…………………………………………………………………56 Refernce……………………………………………………………………………..58 圖目錄 圖2-1各類淡化方式佔世界淡化水的比例………………………………………(6) 圖2-2-1多級蒸發法淡化原理……………………………………………………(7) 圖2-2-2多級閃化法流程圖………………………………………………………(8) 圖2-2-3 蒸氣壓縮製程圖……………………………………………………….(10) 圖2-2-4 各種方法之成本比較………………………………………………,,,,,(10) 圖2-2-5 太陽能蒸發法示意圖………………………………………………….(12) 圖2-3-1各種通過薄膜之特性…………………………………………………..(12) 圖2-3-2 不同孔徑大小及其適用範圍………………………………………….(13) 圖2-3-3 具能量回收的逆滲透法……………………………………………….(14) 圖2-3-4 逆滲透原理…………………………………………………..………...(15) 圖2-3-5 逆滲透流程圖………………………………………………………….(15) 圖2-3-6 RO能源消耗圖…………………………………………………………(16) 圖2-3-7 離子選擇膜示意圖…………………………………………………….(17) 圖2-3-8 電透析製程示意圖…………………………………………………….(18) 圖2-3-9 ED和RO效率比較圖…………………………………………………..(18) 圖2-3-10 薄膜蒸餾原理圖……………………………………………………...(19) 圖2-3-11 多級薄膜蒸餾圖……………………………………………………...(20) 圖2-4-1沸石結構圖……………………………………………………………..(20) 圖2-4-2 (a)剖面結構圖(b)SEM視圖(c)不同濃度下對離子的排斥能力(d)不同杜拜長度對離子的排斥能力………………………………………………………..(21) 圖2-4-3電容去離子法圖示。(a)輸入溶液(b)施加電壓使離子移動至電極(c)電極達到飽和狀態,將淡化過的水沖出(d)將電極極性反轉並將吸附的離子清除…………………………………………………………………………………..(22) 圖3-1-1 Helmholtz 電雙層模型及電位分佈…………………………………..(26) 圖3-1-2 stern電雙層模型及電位分佈…………………………………………(26) 圖3-2-1 (a)陽極氧化鋁正視圖(b)陽極氧化鋁側視圖…………………………...(30) 圖3-2-2 濺鍍原理示意圖……………………………………………………….(31) 圖3-2-3 CON 500型導電度計…………………………………………………..(32) 圖3-2-4 ALD形成原理…………………………………………………………..(33) 圖3-3-1 薄膜製程及其SEM圖………………………………………………….(35) 圖3-3-2 電雙層疊合現象……………………………………………………….(35) 圖3-3-3 不同電壓下電雙層疊合現象(a)未施加(b)施加微量(c)施加較大...(36) 圖4-1-1 實驗設備架設…………………………………………………………...(37) 圖4-1-2 墊片設置……………………………………………………………….(38) 圖4-1-3 電化學量測濃度對電流校準線圖…………………………………….(39) 圖4-1-4 電化學量測12小時後電流變化圖…………………………………...(39) 圖4-1-5 施加電壓於試片與純試片比較圖…………………………………….(40) 圖4-1-6 不同電壓下淡化之結果……………………………………………….(40) 圖4-1-7 加鎳網後量測情形…………………………………………………….(41) 圖4-2-1 濃度對導電度校準線圖……………………………………………….(42) 圖4-2-2 試片breakdown圖示及SEM圖……………………………………….(43) 圖4-2-3 10nm HfO2不同施加電壓下淡化之結果圖…………………………...(43) 圖4-2-4 20nm HfO2不同施加電壓下淡化之結果圖……………………………(44) 圖4-2-5 30nm HfO2不同施加電壓下淡化之結果圖……………………………(45) 圖4-2-6不同厚度HfO2同施加電壓下其效率比較……………………………(45) 圖4-2-7 開關施加電壓對離子通過薄膜之影響結果………………………….(46) 圖4-3-1 試片SEM圖…………………………………………………………….(47) 圖4-3-2 試片TEM剖面圖……………………………………………………….(48) 圖4-4-1 過濾實驗設備架設示意圖…………………………………………….(49) 圖4-4-2 10奈米過濾膜的結果圖………………………………………………(51) 圖4-4-3 20奈米過濾膜的結果圖………………………………………………(51) 圖4-4-4 30奈米過濾膜的結果圖………………………………………………(52) 圖4-4-5 不同厚度試片篩選能力結果圖……………………………………….(52) 圖4-4-6 流速對去鹽效率影響圖……………………………………………….(53) 圖6-1 高機械強度陽極氧化鋁製備過程……………………………………….(57) 表目錄 表1 世界海水淡化廠比例………………………………………………………(2) 表2 離島海水淡化廠一覽表……………………………………………………(3) 表3 過濾方法列表………………………………………………………………(4) 表4各類方法產量………………………………………………………………(22) 表5各類方法造水率……………………………………………………………(23) 表6各方法用電量………………………………………………………………(23) 表7各方法單位成本……………………………………………………………(24) 表3-1 AAO薄膜特性……………………………………………………………(29) 表3-2導電度計性能……………………………………………………………(32) 表3-3各種水溶液之導電度值…………………………………………………(32) 表3-4二氧化鉿材料特性表……………………………………………………(34) 表4-1瑩光強度比較……………………………………………………………(38) 表4-2蠕動幫浦性質資料表……………………………………………………(49) 表4-3與家用逆滲透機比較表…………………………………………………(53)

    [1] United Nation Population Fund Population and Sustainable Development—Five
    Years After Rio 1–36 (UNFPA, 1997).
    [2] Robert Engelman, L. P. Sustaining Water: Population and the Future of
    Renewable Water Supplies 7–47 (Population Action International, 1993).
    [3] Lauren F. Greenleea, Desmond F. Lawlerb, Benny D. Freemana, Benoit Marrotc
    Philippe Moulinc,* “Reverse osmosis desalination: Water sources, technology,and
    today’s challenges”, Water Research, 43, 2009, 2317-2348
    [4]陳子乾、鄭宏飛、馬朝臣、李正良、何開岩,低溫多效太陽能海水淡化裝置最優集
    熱系統的匹配研究,太陽能學報,第29 卷,第六期,2008。
    [5]邱昭源,〝海水淡化處理方法規劃之研究—以新竹科學工業園區為例〞,碩士論文,
    國立台灣大學
    [6]經濟部水利署
    [7]連城廣,「運用尺度效應與材料表面特性之改質提昇奈微米管電動力電池之效
    能」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
    [8] Kim, et al Microfluid Nanofluid 2010
    [9] T Humplik1, J Lee1, S CO’Hern1, B A Fellman1, M A Baig2,S F Hassan2, M A Atieh2, F
    Rahman2, T Laoui2, R Karnik1 and ENWang1,” Nanostructured materials for water
    desalination”, Nanotechnology, 22, 2011,
    [10] 張淵斯,曹知行,”科學發展”,438期,2009年
    [11]國立高雄海洋科技大學輪機工程所低壓蒸餾式海水淡化系統之造水參數研究蔡
    博文九十九 年 一 月 八 日
    [12] Buros,O.K.,”The ABCs of Desalination。Massachusetts, USA: the International
    Desalination Association”, 1990
    [13] Bindra.S.P., Abosh, W.(2001). “Recent development in water desalination”,Desalination
    136,49-56
    [14]中原大學薄膜中心,”桃園縣大學校院產業環保技術講習會”,100年10月25號
    [15] H. Strathmann,” Membrane Separation Processes: Current Relevance and Future
    Opportunities”,AIChE Journal, Vol.47, No.5, May 2001.
    [16] Perry, R.H., Green, D.W. (Eds.), 1997. Perry’s Chemical Engineers’ Handbook. McGraw
    Hill, New York.
    [17]張淑惠,”探討電透析技術於海水淡化處理的特點及其處理效能”,朝陽科技大學
    碩士論文,民國95年
    [18] J. MacHarg and R. Truby, West Coast researchers seek to demonstrate SWRO
    affordability, Desalination & Water Reuse Q., 14(3) (2004) 1–18.
    [19] R. Rautenbach and T. Melin, Mebranverfahren (Grundlagen der Modul- und
    Anlagenauslegung), 2nd ed., 2003.
    [20] Nadjib Drouiche • Noreddine Ghaffour •Mohamed Wahib Naceur • Hacene Mahmoudi •
    Tarik Ouslimane,” Reasons for the Fast Growing Seawater Desalination Capacity in
    Algeria”, Water Resour Manage (2011) 25:2743–2754
    [21]李至倫,”海水淡化之趨勢及未來性分析”,march 28,2003
    [22] Bard, A. J., and Faulkner, L. R., Electrochemical Methods: Fundamentals and
    Applications, John Wiley & Sons, New York (2001)
    [23]粘駿楠,"碳電極之氧官能基對電化學電容之影響",成功大學,碩士論文,中華
      民國九十一年
    [24]雲惟聖,"不含離子非水溶液之電動力學行為",中央大學,碩士論文,中華民國
      九十九年
    [25]ETA Film Technology Inc. Website
    [26] Nathan J. Sniadecki et.al,” Induced Pressure Pumping in Polymer Microchannels via
    Field-Effect Flow Control”,Anal. Chem.,2004,76
    [27] Lai Z, Tsapatsis M and Nicolich J P 2004 Siliceous ZSM-5 membranes by secondary
    growth of b-oriented seed layersAdv. Funct. Mater. 14 716–29
    [28] Li L et al 2004 Desalination by reverse osmosis using MFI zeolite membranes J. Membr.
    Sci. 243 401–4
    [29] AndersonM A, Cudero A L and Palma J 2010 Capacitive deionization as an
    electrochemical means of saving energy and delivering clean water. Comparison to
    present desalination practices: will it compete? Electrochim. Acta 55 3845–56
    [30] Oren Y 2008 Capacitive delonization (CDI) for desalination and water treatment—past,
    present and future (a review) Desalination 228 10–29
    [31]柯文忠,”以原子層沉積製成長氧化物薄膜與金屬奈米顆粒及其應用”,儀器科技研
    究中心

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE