研究生: |
葉立綸 Yeh, Li-Lun |
---|---|
論文名稱: |
非指數失效機制與非常態資料之X-bar 管制圖的經濟與經濟-統計設計 Economic and Economic-Statistical Designs of X-bar Control Charts under Non-Exponential Failure Mechanisms and Non-normal Data |
指導教授: |
陳飛龍
Chen, Fei-Long |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 175 |
中文關鍵詞: | 非常態分配 、變動抽樣區間 、經濟性設計 、經濟統計設計 、非指數失效機制 |
外文關鍵詞: | Non-normal distribution, variable sampling interval, economic design, economic statistical design, non-exponential failure mechanism |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計方法近來已經受到產業界的重視,將其應用於解決製程問題,尤其是在1924年,Shewhart 博士應用統計的原理發展出著名的管制圖(Control chart)方法,並且被廣泛的使用在監控製程的變異,以確保產品的品質能符合顧客的期待。
傳統在探討應用經濟模式決定管制圖的參數時,通常假設製程由管制內(In-control)狀態轉變為管制外(Out-of-control)狀態時,其可歸屬原因(Assignable causes)的發生是服從卜瓦松過程(Poisson process),並且假設由製程中所抽取之樣本組,其組內數據的分佈與樣本統計量均服從常態分配。然而對於電子產品的零組件、機械設備或機台,指數分配就不是一個適合的製程失效機制假設,且由於其危險函數(Hazard function)會隨使用時間增加,因而產生失效的機率便會遞增。此外產業界為考量降低抽樣與檢驗的成本與時間,在應用管制圖監控製程時會設法減少抽樣數量,導致無法應用中央極限定理使樣本組內的數據分佈與樣本統計量逼近常態分配。因此應用傳統的管制圖理論設計實際監控製程之管制圖時,會影響其偵測製程變異的能力。
基於以上因素,本研究嘗試以Burr分配取代常態分配為基礎,並分別於Weibull與Gamma分配的失效機制,以固定抽樣區間(FSI)與變動抽樣區間(VSI)的抽樣方式,及經濟性與經濟統計的設計方法建構X bar管制圖,且應用非線性的搜尋方式決定其參數值,以完成管制圖的設計。最後分別以ECT、型 I 誤差及檢定力三項評估指標,比較應用Burr分配與常態分配於不同非指數失效機制、抽樣區間與設計方法的限制下所建構之X bar管制圖的績效。期望透過研究之結論,可以提供一種降低成本並且維持高品質產品之製程監控工具於實務界。
Statistical approaches have recently been used to solve industrial process control problems. In particular, the control chart technique, developed using a statistical theory by Dr. Shewhart in 1924, is a well-known statistical method and is widely applied to monitor the variance of a manufacturing process, such that it can ensure that the quality of products is consistent with the expectations of customers.
Traditionally, when an economic model is applied to determine the parameters of control charts, it is assumed that the occurrence of an assignable cause follows Poisson distribution when the status of a process changes from in-control into out-of-control condition. Furthermore, it is also assumed that the within-group sampled data and the sampling statistics are also normally distributed. However, the exponential distribution is not an appropriate failure mechanism for some components, mechanical equipment, or machines of electronic products, because their hazard functions will gradually increase with an increase in the time of use. In addition, considering the savings on sampling cost and time, soothe industries usually try to reduce sample size when applying control charts for process monitoring. In these situations, the distribution of subgroup data sets violates the assumption of normal distribution since the central limit theorem cannot be applied. This may reduce the capability of a control chart when applying it for the detection of process variations.
This research intends to study the economic and economic-statistical design of x-bar control charts based on the assumption of Burr distribution instead of normal distribution. Meanwhile, fixed sampling interval (FSI) and variable sampling interval (VSI) approaches will be employed under the cost model of Weibull and Gamma distributions. Moreover, the non-linear search approach is applied to determine the parameters of the control chart. To evaluate the performance of different control chart designs, three performance indexes, namely, ECT, Type I error, and power, are employed. It is expected that the research results can provide industries a process monitoring tool with reduced cost at same quality level.
壹、 中文部份
1. 鄭春生, 1996, 品質管理, 三民書局, 台北市。
2. 王寶翔, 管制圖經濟設計模型之回顧:1991-2001 東海大學碩士論文, 民國92年7月。
3. 陳柔妤, 管制圖的製程失效機制及抽樣間隔之探討, 清華大學碩士論文, 民國93年7月。
4. 張本法, 結合類神經網路與基因演算法於下水聲源訊號辨識系統之研究, 中原大學碩士論文, 民國89年7月。
5. 周慶華, 整合基因演算法與類神經網路於現貨開盤指數之預測-以新加坡交易所摩根台股指數期貨為例, 輔仁大學碩士論文, 民國90年7月。
6. 黃俊龍, 應用基因演算法建立電子裝配業之資源配置決策模式, 東海大學碩士論文, 民國90年6月。
貳、 英文部分
1. Al-Oraini, H.A.& Rahim, M.A. (2003). Economic statistical design of X control charts for systems with Gamma (λ, 2) in-control times. Journal of Applied Statistics, 30, 397-409.
2. Autin, S. (1990). An introduction to genetic algorithms. AI Expert, 49-53.
3. Banerjee, P.K. & Rahim, M.A. (1988). Economic design of X control charts under Weibull shock models. Technometrics, 30(4), 407-414.
4. Bai, D. S. & Lee, K. T.(1998).An economic design of variable sampling interval control charts. International Journal of Production Economics, 54, 57-64.
5. Baker, K.R. (1971). Two process models in economic design of an X chart. AIIE Transactions, 3, 257-263.
6. Burr, I.W. (1942). The effect of non-normality on constants for X and R charts. Industrial Quality Control, May, 563-569.
7. Burr, I.W., (1967).The effect of non-normality on constants for X and R charts. Industrial Quality Control, May 1967, pp. 563-569.
8. Chen, H.F.& Cheng, Y.Y. (2007). Non-normality effects on the economic-statistical design of X charts with Weibull in-control time. European Journal of Operational Research, 176(2), 986-998.
9. Chen,Y.K. (2003). An evolutionary economic-statistical design for VSI X control charts under non-normality. The International Journal of Advanced Manufacturing Technology, 22, 602-610.
10. Chen,Y.K. (2004). Economic design of X control charts for non-normal data using variable sampling policy. International Journal of Production Economics, 92(1), 61-74.
11. Chen,Y.K. (2007). Economic design of variable sampling interval T2control charts-A hybrid Markov Chain approach with genetic algorithms. Expert systems with applications, 33, 683-689.
12. Chen, Y. S & Yang, Y, M.(2002). An extension of Banerjee and Rahim’s model for economic design of moving average control chart for a continuous Flow Process. European Journal of Operational Research, 143, 600-610.
13. Chiu, W. K.(1974).The economic design of Cusum charts for controlling normal means. Applied Statistics, 23(3), 420-433.
14. Chiu, H. N. & Huang, B. S. (1996). The economic design of control charts with repair cost depending on detection delay. Computers & Industrial Engineering 30, pp. 707-718.
15. Chou, C.Y. and Cheng, P.H., (1997).Ranges control chart for non-normal data. Journal of the Chinese Institute of Industrial Engineers, Vol. 14 No. 4, pp. 401- 409.
16. Chou, C.Y., Chen, C.H.,& Liu, H.R.(2001). Economic design of X charts for non-normally correlated data. International Journal of Production Research, 39 (9), 1931-1941.
17. Chou C.Y., Chen C.H. & Liu H.R.(2000). Economic-statistical design of X chart for non-normal data by considering quality loss. Journal of Applied Statistics, 27 (8), 939-951.
18. Chou, C.Y. Chen, C.H. & Liu, H.R.(2004).The Effect of Non-normality on the Economic Design of Warning Limit X-bar Charts. Quality Engineering,16, 567-575
19. Chou, C. Y., Chen, C. H. & Chen, C. H. (2006). Economic design of variable sampling intervals T2 control charts using genetic algorithms. Expert Systems with Applications, 30, 233–242.
20. Chou, C. Y., Chen, J. C.& Lai, W. T. (2008). Economic design of variable sampling intervals EWMA charts with sampling at fixed times using genetic algorithms. Expert Systems with Applications, 34, 419–426.
21. Chung, K. J. & Lin, C. N.(1993). The economic design of dynamic control charts under Weibull shock models. International Journal of Quality and Reliability Management, 10(8), 41-56.
22. Das, T. K., Jain, V., & Gosavi, A. (1997). Economic design of dual-sampling-interval policies for charts with and without run rules. IIE Transactions 29, pp. 497-506.
23. Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.
24. Duncan, A .J. (1956). The economic design of X charts used to maintain current control of a process. Journal of the American Statistical Association, 51, 228-242.
25. Duncan, A. J. (1971). The economic design of -charts when there is a multiplicity of assignable causes. Journal of American Statistical Association 66, pp. 107-121.
26. Gibra, I. N.(1967). Optimal control of process subject to linear trends. Journal of Industrial Engineering, 18(1), 35-41.
27. Gibra, I.N. (1971). Economically optimal determination of the economic design of an X control chart. Management Science,17, 635-646.
28. Girshick, M.A. & Rubin, H. (1952).A Bayes’ approach to a quality control model. Annals of Mathematical Statistics 23:114-125.
29. Goel, A.L. & Wu, S.M., (1968). An algorithm for the determination of the economic design of X charts based on Duncan’s model. Journal of the American Statistical Association, 63, 304-320.
30. Goel, A. L.& Wu, S. M., (1973). Economically optimum design of cusum charts. Management Science, 19(11), 1271-1282.
31. Goldberg, D.E. (1989). Genetic Algorithms in Search, optimization and Machine Learning. Addison-Wesley.
32. Gonzalez, I. M. and Viles, E. (2000). Semi-economic design of -control charts assuming Gamma distribution. Economic Quality Control 15, 109-118.
33. Gordon, G.R. and Weindling, J.I. (1975). A Cost Model for Economic Design of Warning Limit Control Chart Schemes. AIIE Transaction, 3, 319-329
34. Ho, C. C.& Case, K. E.(1994). The economically-based EWMA control chart, International Journal of Production Research, 32, 2179-2186.
35. Hu, P.W. (1984). Economic model of X control chart under non-Poisson process shift. Abstract, TIMS/ORSA Joint National Meeting, San Francisco May 87, 14-16.
36. Hu, P. W.(1986). Economic design of an control chart with nonexponential times between process shifts. IIE News, Quality Control and Reliability Engineering, 21, 1-3.
37. Jones, L. L.& Case, K. E.(1981). Economic design of a joint X and R control Chart. AIIE Transactions, 13, 182-195.
38. Knappenberger, H.A. & Grandage, A.H. (1969). Minimum cost quality control test. AIIE Transactions, 1, 24-32.
39. Liu, H.R., Chou, C.Y. & Chen, C.H.(2003).The Effect of Correlation on the Economic Design of Warning Limit X-bar Charts. International of Advanced Manufacturing Technology.22, 306-312.
40. Lorenzen, T. J.& Vance, L. C.(1986). The economic design of control charts:an unified approach. Technometrics, 28(1), 3-10.
41. McWilliams, T. P.(1989). Economic control chart design and the in-control time distribution:A Sensitivity Analysis. Journal of Quality Technology, 21, 103-110.
42. McWilliams, T.P. (1994). Economic, statistical, and economic-statistical X chart designs. Journal of Quality Technology, 26, 227-238.
43. Michalewicz, Z. (1992). Genetic algorithms+data structures=evolution programs. Springer-Verlag, New York.
44. Moskowitz, H., Plante, R.& Chun, Y. Ha. (1994). Effect of process failure mechanism on economic control charts. IIE Transactions 26, pp. 12-21.
45. Nelson, W.(1985). Weibull analysis of reliability data with few or no failures. Journal of Quality Technology, 17, 140-146.
46. Otha, H. & Rahim, M.A. (1997). A dynamic economic model for an X-control chart design. IIE Transactions, 29(6), 481-486.
47. Page, E.S.(1962).A Modified Control Chart with Warning Limits. Biometrika, 49, 171-176.
48. Panagos, M. R., Heikes R. G., and Montgomery, D. C.(1985). Economic design of control charts for two manufacturing process models. Naval Research Logistics Quarterly, 32, 631-646.
49. Parkhideh, B. & Case, K.E. (1989). The economic design of a dynamic X-control chart. IIE Transactions, 21, 313-323.
50. Park, C. and Reynolds, M. R., Jr. (1994). Economic design of a variable sample size charts. Communication in Statistics:Simulation and Computation 23, pp. 467-483.
51. Park, C. and Reynolds, M. R., Jr. (1994). Economic design of a variable sample size charts.Communication in Statistics:Simulation and Computation 23, pp. 467-483.
52. Rahim, M.A. (1994). Joint determination of production quantity, inspection schedule, and control charts design. IIE Transactions, 26(6), 2-11.
53. Rahim, M.A. & Banerjee, P.K.(1993). A generalized economic model for the economic design of X control charts for production systems with increasing failure rate and early replacement. Naval Research Logistics, 40(6), 787-809.
54. Rahim, M.A. & Ben-Daya, M. (1998). A generalized economic model for joint determination of production quantity, inspection schedule, and control charts design. International Journal of Production Research, 36(1), 277-289.
55. Rahim, M.A. (1985). Economic model of X chart under non-normally and measurement errors. Computer and operations research, 12(3), 291-299.
56. Reynolds, M. R., Jr., Amin, R. W., Arnold, J. C.& Nachlas, J. A.(1988). Charts with variable sampling intervals. Technometrics, 30(2), 181-192.
57. Reynolds, M. R. Jr.& Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable sampling intervals. Sequential Analysis, 8, 51-77.
58. Saniga, E.M. (1989). Economic statistical control chart designs with an application to X and R charts. Technometrics, 31(3), 313-320.
59. Surtihadi, J.& Rachavachari, M. (1994). Exact economic design
of charts for general time in-control distributions. International Journal of Production Research 32, pp. 2287-2302.
60. Taylor, H. M.(1968). The economic design of cumulative sum control chart. Technometrics, 10, 479-488.
61. Tasi, H.T.(1990).Probabilistic tolerance design for a subsystem under Burr Distribution using Taguchi’s quadratic loss function. Communications in Statistics — Theory and Methods, Vol. 19 No. 12, pp. 4679-4696.
62. Weindling, J.I. Littauer, S.B. & Tiago de Oliverira, J. (1970).Mean Action Time of the Control Chart with Warning Limits. Journal of Quality Technology, 2, 79-85.
63. Woodall, W. H.(1985). The statistical design of quality control charts. The Statistician, 34,155-160.
64. Woodall, W. H.(1986). Weaknesses of the economic design of control charts. Technometrics, 28, 408-409.
65. Woodall, W. H.(1987). Conflicts between Deming’s philosophy and the Economic Design of Control Charts in Frontiers in Statistical Quality Control. 3, eds. H.J.Lenz, G.B. Wetherill, and P.T.Wilrich, Physical-Verlag, Vienna.
66. Yourstone, S.A., & Zimmer, W.J. (1992). Non-normality and the design of control charts for averages. Decision Science, 23, 1099-1113.
67. Zhang, G.., & Berardi, V.(1997). Economic statistical design of X control chart for systems with Weibull in-control times. Computers and Industrial Engineering, 32, 575-586.
68. Zimmer, W.J., & Burr, I.W.(1963). Variables sampling plans based on non-normal populations. Industrial Quality Control, July, 18-36.