研究生: |
劉奕良 Liu, Yi-Liang |
---|---|
論文名稱: |
避開子集總和為 f 之最大基數整數分割: 循環特性的漸進緊邊界 Maximal Cardinality Integer Partition that Avoids Subset Sum of f : An Asymptotic Tight Bound for Its Cyclic Property |
指導教授: |
韓永楷
Hon, Wing-Kai |
口試委員: |
蔡孟宗
Tsai, Meng-Tsung 王弘倫 Wang, Hung-Lung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 整數分割 、最大基數 、循環性質 、漸進緊邊界 |
外文關鍵詞: | Integer Partition, Maximum Cardinality, Cyclic Property, Asymptotic Tight Bound |
相關次數: | 點閱:126 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設 n 和 f 為兩個正整數。在本文中,我們將研究對於 n 之整數分割,其任何子集總和皆不等於 f 的最大基數分割 P 的特性。Tan 等人 [3] 發現,若固定 f ,當 n 超過一定的閾值 τf 時,P 中的部分數會隨著 n 的增加表現出一種循環特性。具體來說,他們證明了 τf = O(f L2) ,其中 L 表示 f 的最小正非除數。也就是說,對於任意 f ,循環性質總是存在的。
Tan 等人猜想 τf = Θ(f L) 。本文證明了此猜想的正確性。
Let n and f be two positive integers. In this thesis, we investigate the maximal cardinality integer partition P of n which does not contain any subset P ′ ⊆ P with sum equal to f . Tan et al. [3] showed that when f is fixed, the number of parts in P exhibits a cyclic property, as n increases and n exceeds a certain threshold τf . In particular, they showed that τf = O(f L2), where L denotes the smallest positive non-divisor of f . That is, the cyclic property always occurs for any f .
It was conjectured that τf = Θ(f L). This thesis shows that this conjecture is true.
[1] G. H. Hardy and S. Ramanujan. “Asymptotic Formulaae in Combinatory Analysis”. In: Proceedings of the London Mathematical Society 2-17.1 (1918), pp. 75–115. doi: 10.1112/plms/s2-17.1.75.
[2] Tanya Khovanova and Konstantin Knop. Coins of Three Different Weights. 2014. arXiv: 1409.0250 [math.HO].
[3] Te-Sheng Tan, Dai-Yang Wu, and Wing-Kai Hon. “Partitions of n that avoid partitions of f, and an application to the tiny-pan coin weighing problem”. In: Discrete Mathematics 340.6 (2017), pp. 1397–1404. issn: 0012-365X. doi: https://doi.org/10.1016/j.disc.2016.09.034.
[4] Eric W Weisstein. “Ferrers diagram”. From MathWorld–A Wolfram Web Resource. [Accessed online on June 20, 2023.] url: https : / / mathworld . wolfram.com/FerrersDiagram.html.