簡易檢索 / 詳目顯示

研究生: 李育銘
Lee, Yu-Ming
論文名稱: Guidelines for Drug Design and Drug target Discovery: Case studies on Zinc-containing Proteins and ADP-ribosyltransferases
含鋅蛋白與二磷酸腺苷核糖轉移酶的藥物設計與藥物標靶尋找的策略研究
指導教授: 林小喬
Lim, Carmay
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 36
中文關鍵詞: 含鋅蛋白二磷酸腺苷核糖轉移酶藥物設計藥物標靶
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the era of post-genomics, computer is a powerful tool of aiding drug design and exploring useful information in databases. Due to the high cost of developing new drugs, computer aided drug design have been widely used in drug discovery and lead compound optimization. In this thesis we try to deduce some guidelines of drug design and drug target discovery for zinc-containing proteins and ADP-ribosyltransferases, as these enzymes are important drug targets for various diseases such as cancer, bacteria infections, bacterial resistance to antibiotics, rheumatoid arthritis, diabetes, and endotoxic shock.
    Chapter 2. We reveal the physical basis for the observed differences between structural and catalytic Zn□sites: In most catalytic sites, water is found bound to Zn2+ as it transfers the least charge to Zn2+ and is less bulky compared to the protein ligands, enabling Zn2+ to serve as a Lewis acid in catalysis. In most structural sites, however, ≥2 Cys□□□ are found bound to Zn2+, as Cys□□ transfers the most charge to Zn2+ and reduces the Zn charge to such an extent that Zn2+ can no longer act as a Lewis acid; furthermore, steric repulsion among the bulky Cys(S□□) prevents Zn2+ from accommodating another ligand.
    Chapter 3. We discuss the differential effects of commonly observed Zn-His-Bkb vs. Zn-His-[Asp/Glu] triad on Zn-core stability and reactivity. We also reveal the advantage of a second-shell Asp/Glu carboxylate in catalytic Zn-cores: relative to a Bkb carbonyl group, it increases (i) the HOMO energy of the cationic/neutral zinc core, (ii) the reactivity of the attacking Zn-bound OH□, (iii) electron transfer to the substrate, and (iv) the stability of the metal complex upon electron transfer.
    Chapter 4. We discover a conserved structural motif for recognizing nicotinamide adenine dinucleotide in poly(ADP-ribose) polymerases and ADP-ribosylating toxins and discuss the implications for structure□based drug design. This locally conserved structure binds the nicotinamide mononucleotide moiety in a structurally conserved ring□like conformation. The biological implications/applications of locally conserved structures for toxins/PARPs and the nicotinamide mononucleotide are discussed.


    在後基因時代,電腦是幫助我們搜尋資料庫以及輔助藥物設計的強大的工具。它可以降低藥物開發的高成本,並且替我們從大量資料庫中篩選出可能的藥物結構或者藥物標靶。因此,我們在本論文針對兩種重要蛋白質,並利用量子化學理論計算以及分子模擬揭櫫了電腦輔助藥物設計的原理原則。在本論文中我們探討兩大類重要的蛋白質。第一種是含鋅蛋白質,此類蛋白質已經被廣泛利用來治療癌症,細菌抗藥性,類風濕性關節炎以及糖尿病等疾病。第二種是二磷酸腺苷核糖轉移酶,這個酵素是近幾年來被廣為研究而且被視為可以治療難治癌症的藥物標靶,有許多家知名藥廠已經針對這個酵素推出許多抑制劑,目前已經有一些抑制劑已通過第二期的臨床試驗。
    在第二章我們揭櫫了二價的鋅離子在結構功能與催化功能結合位置中有不同的物理化學性質。由於鋅離子主要扮演路易士酸的角色,Cys在與鋅離子結合時相對於其他常見的胺基酸,會傳送最多的電荷給金屬,導致鋅離子成為微弱路易士酸,使得鋅結合位置成為結構功能的角色。相反的,催化功能的鋅結合位置不常與Cys鍵結,使得此結合位置的鋅離子適合扮演催化的角色。
    在第三章我們討論了在催化功能的鋅結合位置Zn-His-Bkb與 Zn-His-[Asp/Glu] 三聚體。後者常見於催化角色而前者卻較少發現,我們利用理論計算探討了其中的原因。
    在第四章我們在二磷酸腺苷核糖轉移酶的催化中心歸納出共同的構形,此構形外觀貌似一隻蠍子,故命名為蠍子構形。在本章我們分析了二磷酸腺苷核糖轉移酶主要運用蠍子構形來辨識她的受體,並且在蠍子構形頭與尾部提供了較強的的凡得瓦作用力跟NAD+結合。此外我們也發現NAD+與二磷酸腺苷核糖轉移酶結合的時候會形成一個特殊的構形,此構形可以幫助吾人設計更有抑制力的藥物。最後我們利用蠍子構形彼此在三度空間相似的特點,發展了一個將藥物結構或NAD+放入二磷酸腺苷核糖轉移酶結合位置的準確並簡單的方法。此方法可以幫物吾人在電腦輔助藥物設計上對能量與結合常數有更正確的估計,以期設計更有抑制力的藥物。

    Chapter 1 Introduction 4 Chapter 2 Physical Basis Underlying Structural and Catalytic Zn□binding Sites in Proteins 7 Chapter 3 Differential Effects of the Zn-His-Bkb vs. Zn-His-[Asp/Glu] Triad on Zn-core Stability and Reactivity 8 Chapter 4 Conserved Structural Motif for Recognizing Nicotinamide Adenine Dinucleotide in Poly(ADP-Ribose) Polymerases and ADP-Ribosylating Toxins: Implications for Structure Based Drug Design 9 Chapter 5 Conclusions and Future work 31 Chapter 6 Bibliography 33

    1. Till, S.; Diamantara, K.; Ladurner, A. G. PARP: a transferase by any other name. Nat. Struct. Mol. Biol. 2008, 15, 1243-1244.
    2. Ame, J. C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays 2004, 26 882–893.
    3. Otto, H.; Reche, P. A.; Bazan, F.; Dittmar, K.; Haag, F.; Koch-Nolte, F. In silico characterization of the family of PARP-like poly (ADP-ribosyl) transferases (pARTs). BMC Genomics 2005, 6, 139-161.
    4. Hassa, P. O.; Hottiger, M. O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008, 13, 3046-3082.
    5. Burkle, A. The most elaborate metabolite of NAD+. FEBS J. 2005, 272, 4576-4589.
    6. Schreiber, V.; Dantzer, F.; Ame, J. C.; de Murcia, G. Poly (ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. 2006, 7, 517-528.
    7. Virag, L.; Szabo, C. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 2002, 54, 375-429.
    8. Eliasson, M. J. L.; Sampei, K.; Mandir, A. S.; Hurn, P. D.; Traystman, R. J.; Bao, J.; Pieper, A.; Wang, Z. Q.; Dawson, T. M.; Snyder, S. H. Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 1997, 3, 1089-1095.
    9. Ratnam, K.; Low, J. A. Current development of clinical inhibitors of poly (ADP-ribose) polymerase in oncology. Clin. Cancer Res. 2007, 13, 1383-1388.
    10. Bryant, H. E.; Schultz, N.; Thomas, H. D.; Parker, K. M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N. J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 2005, 434, 913-917.
    11. Farmer, H.; McCabe, N.; Lord, C. J.; Tutt, A. N. J.; Johnson, D. A.; Richardson, T. B.; Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917-921.
    12. Rubinstein, W. S. Hereditary breast cancer: pathobiology, clinical translation, and potential for targeted cancer therapeutics. Fam. Cancer 2008, 7, 83-89.
    13. Opar, A. Novel anticancer strategy targets DNA repair. Nat. Rev. Drug Discov. 2009, 8, 437-438.
    14. Daniel, R. A.; Rozanska, A. L.; Thomas, H. D.; Mulligan, E. A.; Drew, Y.; Castelbuono, D. J.; Hostomsky, Z.; Plummer, E. R.; Boddy, A. V.; Tweddle, D. A. Inhibition of poly (ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin. Cancer Res. 2009, 15, 1241-1249.
    15. Donawho, C. K.; Luo, Y.; Luo, Y.; Penning, T. D.; Bauch, J. L.; Bouska, J. J.; Bontcheva-Diaz, V. D.; Cox, B. F.; DeWeese, T. L.; Dillehay, L. E.; Ferguson, D. C.; Ghoreishi-Haack, N. S.; Grimm, D. R.; Guan, R.; Han, E. K.; Holley-Shanks, R. R.; Hristov, B.; Idler, K. B.; Jarvis, K.; Johnson, E. F.; Kleinberg, L. R.; Klinghofer, V.; Lasko, L. M.; Liu, X.; Marsh, K. C.; McGonigal, T. P.; Meulbroek, J. A.; Olson, A. M.; Palma, J. P.; Rodriguez, L. E.; Shi, Y.; Stavropoulos, J. A.; Tsurutani, A. C.; Zhu, G.-D.; Rosenberg, S. H.; Giranda, V. L.; Frost, D. J. ABT-888, an Orally Active Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents in Preclinical Tumor Models. Clin. Cancer Res. 2007, 13, 2728-2737.
    16. Penning, T. D.; Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Donawho, C. K.; Frost, D. J.; Bontcheva-Diaz, V.; Bouska, J. J.; Osterling, D. J.; Olson, A. M.; Marsh, K. C.; Luo, Y.; Giranda, V. L. Discovery of the Poly(ADP-ribose) Polymerase (PARP) Inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the Treatment of Cancer. J. Med. Chem. 2008, 52, 514-523.
    17. Thomas, H. D.; Calabrese, C. R.; Batey, M. A.; Canan, S.; Hostomsky, Z.; Kyle, S.; Maegley, K. A.; Newell, D. R.; Skalitzky, D.; Wang, L.-Z.; Webber, S. E.; Curtin, N. J. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 2007, 6, 945-956.
    18. Plummer, R.; Lorigan, P.; Evans, J.; Steven, N.; Middleton, M.; Wilson, R.; Snow, K.; Dewji, R.; Calvert, H. First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J. Clin. Oncol. (Meeting Abstracts) 2006, 24, 8013
    19. Peralta-Leal, A.; Rodr guez-Vargas, J. M.; Aguilar-Quesada, R.; Rodr guez, M. I.; Linares, J. L.; de Almod var, M. R.; Oliver, F. J. PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases. Free Radical Biol. Med. 2009, 47, 13-26.
    20. Jagtap, P.; Szab, C. Poly (ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 2005, 4, 421-440.
    21. Holbourn, K. P.; Shone, C. C.; Acharya, K. R. Exploring the mechanism of ADP-ribosylating toxins. FEBS J. 2006, 273, 4579-4593.
    22. Fieldhouse, R. J.; Merrill, A. R. Needle in the haystack: structure-based toxin discovery. Trends Biochem. Sci. 2008, 33, 546-556.
    23. Yates, S. P.; Merrill, A. R. A catalytic loop within Pseudomonas aeruginosa exotoxin A modulates its transferase activity. J. Biol. Chem. 2001, 276, 35029-35036.
    24. Roberts, T. M.; Merrill, A. R. A re-evaluation of the role of histidine-426 within Pseudomonas aeruginosa exotoxin A. Biochem. J. 2002, 367, 601-608.
    25. Armstrong, S.; Merrill, A. R. Toward the Elucidation of the Catalytic Mechanism of the Mono-ADP-Ribosyltransferase Activity of Pseudomonas aeruginosa Exotoxin A. Biochemistry. 2004, 43, 183-194.
    26. Parikh, S.; Schramm, V. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin. Biochemistry 2004, 43, 1204-1212.
    27. Zhou, G.; Parikh, S.; Tyler, P.; Evans, G.; Furneaux, R.; Zubkova, O.; Benjes, P.; Schramm, V. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states. J. Am. Chem. Soc. 2004, 126, 5690-5698.
    28. Jorgensen, R.; Merrill, A. R.; Yates, S. P.; Marquez, V. E.; Schwan, A. L.; Boesen, T.; Andersen, G. R. Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 2005, 436, 979-984.
    29. Jorgensen, R.; Wang, Y.; Visschedyk, D.; Merrill, A. R. The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep. 2008, 9, 802-809.
    30. Yates, S. P.; Taylor, P. L.; J rgensen, R.; Ferraris, D.; Zhang, J.; Andersen, G. R.; Merrill, A. R. Structure–function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa. Biochem. J. 2005, 385, 667- 675.
    31. Jagtap, P.; Soriano, F. G.; Virág, L.; Liaudet, L.; Mabley, J.; Szabó, É.; Haskó, G.; Marton, A.; Lorigados, C. B.; Gallyas, F., Jr.; Sümegi, B.; Hoyt, D. G.; Baloglu, E.; VanDuzer, J.; Salzman, A. L.; Southan, G. J.; Szabó, C. Novel phenanthridinone inhibitors of poly(adenosine 5'-diphosphate-ribose) synthetase: Potent cytoprotective and antishock agents*. Crit. Care Med. 2002, 30, 1071-1082.
    32. Soriano, F. G.; Vir g, L.; Jagtap, P.; Szab; Mabley, J. G.; Liaudet, L.; Marton, A.; Hoyt, D. G.; Murthy, K. G. K.; Salzman, A. L. Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nat. Med. 2001, 7, 108-113.
    33. Yates, S.; Jorgensen, R.; Andersen, G.; Merrill, A. Stealth and mimicry by deadly bacterial toxins. Trends Biochem. Sci. 2006, 31, 123-133.
    34. Domenighini, M.; Rappuoli, R. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol. Microbiol. 1996, 21, 667-674.
    35. Han, S.; Arvai, A. S.; Clancy, S. B.; Tainer, J. A. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J. Mol. Biol. 2001, 305, 95-107.
    36. Lehtio, L.; Jemth, A. S.; Collins, R.; Loseva, O.; Johansson, A.; Markova, N.; Hammarstro m, M.; Flores, A.; Holmberg-Schiavone, L.; Weigelt, J. Structural Basis for Inhibitor Specificity in Human Poly (ADP-ribose) Polymerase-3. J. Med. Chem. 2009, 52, 3108–3111.
    37. Tsuge, H.; Nagahama, M.; Nishimura, H.; Hisatsune, J.; Sakaguchi, Y.; Itogawa, Y.; Katunuma, N.; Sakurai, J. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 2003, 325, 471-483.
    38. Bell, C. E.; Yeates, T. O.; Eisenberg, D. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: A comparison with NAD bound to the oxidoreductase enzymes. Protein Sci. 1997, 6, 2084-2096.
    39. Szabo, C.; Dawson, V. L. Role of poly (ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol. Sci. 1998, 19, 287-298.
    40. Yan, Z.; Yang, D. C. H.; Jett, M. Cholera Toxin Induces Tumor Necrosis Factor α Production in Human Monocytes. Mol. Cell. Biol. Res. Commun. 1999, 2, 124-130.
    41. Griffin, R. J.; Srinivasan, S.; Bowman, K.; Calvert, A. H.; Curtin, N. J.; Newell, D. R.; Pemberton, L. C.; Golding, B. T. Resistance-Modifying Agents. 5.1 Synthesis and Biological Properties of Quinazolinone Inhibitors of the DNA Repair Enzyme Poly(ADP-ribose) Polymerase (PARP). J. Med. Chem. 1998, 41, 5247-5256.
    42. Skalitzky, D. J.; Marakovits, J. T.; Maegley, K. A.; Ekker, A.; Yu, X.-H.; Hostomsky, Z.; Webber, S. E.; Eastman, B. W.; Almassy, R.; Li, J.; Curtin, N. J.; Newell, D. R.; Calvert, A. H. Tricyclic Benzimidazoles as Potent Poly(ADP-ribose) Polymerase-1 Inhibitors J. Med. Chem. 2003, 46, 210-213.
    43. Liu, S. K.; Coackley, C.; Bristow, R. A Novel Poly (ADP-ribose) Polymerase Inhibitor, ABT-888, Sensitizes Malignant Human Cell Lines to Ionizing Radiation Under Oxia and Hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 615-615.
    44. Costantino, G.; Macchiarulo, A.; Camaioni, E.; Pellicciari, R. Modeling of Poly (ADP-ribose) polymerase (PARP) Inhibitors. Docking of Ligands and Quantitative Structure- Activity Relationship Analysis. J. Med. Chem. 2001, 44, 3786-3794.
    45. Zhang, C.; Liu, S.; Zhou, H.; Zhou, Y. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci. 2004, 13, 400-411.
    46. Zhang, C.; Liu, S.; Zhu, Q.; Zhou, Y. A Knowledge-Based Energy Function for Protein-Ligand, Protein-Protein, and Protein-DNA Complexes. J. Med. Chem. 2005, 48, 2325-2335.
    47. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMm: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187-217.
    48. MacKerell, J. A. D.; Bashford, D.; Bellott; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M.. All-hydrogen empirical potential for molecular modeling and dynamics studies of proteins using the CHARMM22 force field. J. Phys. Chem. B. 1998, 102, 3586-3616.
    49. Pavelites, J. J.; Gao, J.; Bash, P. A.; Mackerell Jr., A. D. A molecular mechanics force field for NAD+, NADH, and the pyrophosphate groups of nucleotides. J. Comput. Chem. 1997, 18, 221-239.
    50. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
    51. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids. Oxford University Press: NY, 1987.
    52. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE