簡易檢索 / 詳目顯示

研究生: 張翔榮
Chang, Hsiang-Jung
論文名稱: 高飽和輸出功率S頻帶摻鉺光纖放大器之研究
The studies of high saturation output power S-band erbium-doped fiber amplifiers
指導教授: 張彌彰
Chang, Mi-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 44
中文關鍵詞: 摻鉺光纖放大器S頻帶高飽和輸出功率
外文關鍵詞: erbium-doped fiber amplifier, S-band, high saturation output power
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we demonstrate a high saturation power S-band erbium-doped fiber amplifier (EDFA) by employing high cutoff efficiency C-band ASE suppression filters located in standard C-band silica-based EDFs. First of all, we have made wideband tunable (1250 ~ 1650 nm) fused-tapered short-pass fiber filters with high cutoff efficiency and temperature-tuning efficiency (50 nm/□C) by properly choosing the applied dispersive material and the tapered fiber structure. As a result, the saturation input and output power for 1490-nm S-band EDFA using standard EDF are improved to be about +8.8 dBm and +12.2 dBm respectively, under 980 nm pump power of 200 mW in a forward-pumping configuration with a gain of 6 dB. Based on these results, already better than our previous reported results in a higher gain S-band EDFA case, a higher saturation output power can be achieved along with a larger gain by using longer lengths of EDF with more in-line C-band ASE suppression fiber filters.


    在此論文中,我們說明了採用高截止效率的抑制C頻帶放大自發幅射濾波器的高飽和功率S頻帶摻鉺光纖放大器,而濾波器置放於C頻帶矽基摻鉺光纖之中。首先,我們製作了寬頻帶(1250~1650 nm)的熔拉低通濾波器,其中透過適當的選用色散材料和熔拉光纖結構,就能夠達到高截止效率與高溫度調整效率(50 nm/□C)。最終在採用順向激發架構下,200mW的980nm激發功率可得到6dB的增益,並改善了1490-nm S頻帶摻鉺光纖放大器的飽和輸入功率和飽和輸出功率,分別可達到8.8 dBm和12.2 dBm,這些結果已經比過去一些高增益S頻帶摻鉺光纖放大器的例子還要佳。只要能使用更長的摻鉺光纖並在其中置放更多的C頻帶放大自發幅射濾波器,將可得到更高的增益和更高的飽和輸出功率。

    Contents Abstract (in English)…………………………………………………...I Abstract (in Chinese)………………………………………………….II Acknowledgement (in Chinese)…………………………………...…III Contents………………………………………………………………IV List of Figures…………………………………………………………V Chapter 1 Introduction…………………………………………………1 1.1 Review of erbium-doped fiber amplifier…………………………1 1.2 Motivation of the thesis…………………………………………..2 1.3 Structure of the thesis…………………………………………….5 Chapter 2 Principle……………………………………………………..6 2.1Principles of S-band erbium-doped fiber amplifier…………….....6 2.2 Dispersion in single-mode fiber………………………………...12 2.2.1 Dispersion………………………………………………..12 2.2.2 Material dispersion……………………………………….14 2.2.3 Waveguide dispersion……………………………………..15 2.3 Dispersion engineering on optical fibers……………………….17 Chapter 3 Fabrication and experimental set-up……………………..21 3.1 Thermo-tunable short-wavelength-pass fused-tapered fiber filter…………………………………………………………….21 3.1.1 Introduction………………………………………………21 3.1.2 Experimental set-up………………………………………23 3.2 S-band EDFA by using ASE suppressing filters………………...26 3.2.1 Introduction………………………………………………26 3.2.2 Experimental set-up………………………………………28 Chapter 4 Measurement and discussion……………………………...32 4.1 High cutoff efficiency of short-pass fiber filter………………...32 4.2 High saturation power S-band EDFA…………………………..35 Chapter 5 Conclusions………………………………………………...40 Reference……………………………………………………………….42 List of Figures Fig. 2.1 The three-level systems used for the EDFA model……………………….......7 Fig. 2.2 A prism disperses with light………………………………………...……….13 Fig. 2.3 The refractive index dispersion curves for germanium-silicate at the different doping concentrations of germanium……………………………18 Fig. 2.4 Slope difference of germanium-silicate glass with respect to fused silica……………………………………………………………………….19 Fig. 3.1 Diagram of a tapered fiber structure with a uniform waist……………….....23 Fig. 3.2 The tapering station…………………………………………………………24 Fig. 3.3 Schematic diagram of the tapering station used to fabricate the tapered fibers. The z-arrows indicate the direction of movement. LF is the length of oscillation of the flame torch. SMF-28, single-mode fiber………………..24 Fig. 3.4 Experimental set-up of the high saturation power S-band EDFA…………..28 Fig. 3.5 Refractive index dispersion curves for the index matching liquid (blue) and the effective index of the tapered fiber (red) at different temperatures…………31 Fig. 4.1 Fused-tapered fiber short-pass filter…………………………………….......32 Fig. 4.2 Spectral responses of the tapered fiber short-pass filters using a Cargille liquid with nD = 1.456 at different temperatures…………………………33 Fig. 4.3 Spectral reponses of the taperd fiber in the straight and bending conditions………………………………………………………………….34 Fig. 4.4 The ASE spectra of a S-band EDFA with 6-m-long EDF and an in-line filter under different 980-nm pump powers…………………………………….36 Fig. 4.5 The signal gain versus pump power at 1486.9-nm wavelength for different input signal power at 6-m-long EDF with an in-line ASE filter………………..37 Fig. 4.6 Signal gain versus signal input power at 1490nm wavelength for 3-m EDF and 6-m EDF with an in-line filter………………………………………...........38

    References
    [1.1] R. I. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise-figure,” IEEE Photon. Technol. Lett. 4, 1345-1347 (1992).
    [1.2] N. K. Chen, C. M. Hung, S. Chi, and Y. Lai, “Towards the short-wavelength limit lasing at 1450 nm over 4I13/2 □ 4I15/2 transition in silica-based erbium-doped fiber,” Opt. Express 15, 16448-16456 (2007).
    [1.3] M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, “S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm,” in Proc. of OFC 2003, WK2 (2003).
    [1.4] M. A. Arbore, “Application of fundamental-mode cutoff for novel amplifiers and lasers,” in Proceedings of Optical Fiber Communication Conference OFC’05 (Optical Society of America, Washington, D.C., 2005), paper OFB4.
    [1.5] N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, “Tunable Er3+-doped fiber amplifiers covering S and C + L bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters,” Opt. Lett. 31, 2842-2844 (2006).
    [1.6] C. M. Hung, N. K. Chen, Y. Lai, and S. Chi, “Double-pass high-gain low-noise EDFA over S- and C+L-bands by tunable fundamental-mode leakage loss,” Opt. Express 15, 1454-1460 (2007).
    [1.7] H. Ono, M. Yamada, and M. Shimizu, “S-band erbium-doped fiber amplifiers with a multistage configuration□design, characterization, and gain tilt compensation,” J. Lightwave Technol. 21, 2240-2246 (2003).
    [1.8] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, New York, 1994), Chap. 4.
    [1.9] S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap.3.
    [1.10] W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004-1010 (1991).
    [1.11] C. R. Giles, and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271- 283 (1991).
    [1.12] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1998), Chap. 6.
    [1.13] Y. Mita, T. Yoshida, Y. Yagami, and S. Shionoya, “Luminescence and relaxation processes in Er3+-doped glass fibers,” J. Appl. Phys. 71, 938-941 (1992).
    [2.4] J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibres,” Opt. Commun., vol. 204, pp. 111-118, 2002.
    [2.5] K. Morishita, “Optical fiber devices using dispersive materials,” J. Lightwave Technol., vol. 7, pp. 198-201, 1989.
    [2.6] K. Morishita, “Bandpass and band-rejection filters using dispersive fibers,” J. Lightwave Technol., vol. 7, pp. 816-819, 1989.
    [2.7] N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. vol., 29, pp. 2219-2221, 2004.
    [2.8] P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett., vol. 70, pp. 3588-3591, 1993.
    [2.9] M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol., vol. 14, pp. 2338-2343, 1996.
    [2.10] H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, “Fluorine-doped SiO2 glasses for F-2 excimer laser optics: fluorine content and color-center formation,” Opt. Lett., vol. 24, pp. 1549-1551, 1999.
    [2.13] R. Zengerle and O. Leminger, “Narrow-band wavelength-selective directional couplers of dissimilar single-mode fibers,” J. Lightwave Technol. LT-5, pp. 1196-1198, 1987.
    [2.14] C. J. Chung and A. Safaai-Jazi, “Narrow-band spectral filters made of W-index and step-index fibers,” J. Lightwave Technol., vol. 10, pp. 42-45, 1992.
    [2.15] M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, pp. 535-542, 1982.
    [2.16] M. A. Arbore, “Application of fundamental-mode cutoff for novel amplifiers and lasers,” in Optical Fiber Communication Conference OFC’05 (Optical Society of America, Washington, D.C., 2005), paper OFB4.
    [2.17] N. K. Chen, S. Chi, S. M. Tseng, and Y. Lai, “Wavelength-tunable fiber co-directional coupler filter based on asymmetric side-polished fiber coupler with local dispersive intermediate layer,” submitted to ECOC 2006 conference.
    [2.18] N. K. Chen and S. Chi, “Influence of a holey cladding structure on the spectral characteristics of side-polished endlessly single-mode photonic crystal fibers,” accepted by Opt. Lett. (2006).
    [3.1] N. K. Chen, K. C. Hsu, H. J. Chang, S. Chi, and Y. Lai, “Tunable Er3+/Yb3+ codoped fiber amplifiers covering S- and C-Bands (1460 ~ 1580 nm) based on discrete fundamental-mode cutoff,” in Proceedings of OFC 2006 conference, Anaheim, USA, Mar. 5-10, 2006. OThJ5.
    [3.2] N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29, 2219-2221 (2004).
    [3.3] J. Villatoro, D. Monzon-Hernandez, and D. Luna-Moreno, “In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material,” IEEE Photon. Technol. Lett. 17, 1665-1667 (2005).
    [4.1] N. K. Chen and S. Chi, “Spectral characteristics of side-polished endlessly single-mode photonic crystal fiber: waveguide dispersion,” in proceedings of OFC 2006 conference, Anaheim, USA, Mar. 5-10, 2006. OWI5

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE