研究生: |
張翔榮 Chang, Hsiang-Jung |
---|---|
論文名稱: |
高飽和輸出功率S頻帶摻鉺光纖放大器之研究 The studies of high saturation output power S-band erbium-doped fiber amplifiers |
指導教授: |
張彌彰
Chang, Mi-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 摻鉺光纖放大器 、S頻帶 、高飽和輸出功率 |
外文關鍵詞: | erbium-doped fiber amplifier, S-band, high saturation output power |
相關次數: | 點閱:125 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we demonstrate a high saturation power S-band erbium-doped fiber amplifier (EDFA) by employing high cutoff efficiency C-band ASE suppression filters located in standard C-band silica-based EDFs. First of all, we have made wideband tunable (1250 ~ 1650 nm) fused-tapered short-pass fiber filters with high cutoff efficiency and temperature-tuning efficiency (50 nm/□C) by properly choosing the applied dispersive material and the tapered fiber structure. As a result, the saturation input and output power for 1490-nm S-band EDFA using standard EDF are improved to be about +8.8 dBm and +12.2 dBm respectively, under 980 nm pump power of 200 mW in a forward-pumping configuration with a gain of 6 dB. Based on these results, already better than our previous reported results in a higher gain S-band EDFA case, a higher saturation output power can be achieved along with a larger gain by using longer lengths of EDF with more in-line C-band ASE suppression fiber filters.
在此論文中,我們說明了採用高截止效率的抑制C頻帶放大自發幅射濾波器的高飽和功率S頻帶摻鉺光纖放大器,而濾波器置放於C頻帶矽基摻鉺光纖之中。首先,我們製作了寬頻帶(1250~1650 nm)的熔拉低通濾波器,其中透過適當的選用色散材料和熔拉光纖結構,就能夠達到高截止效率與高溫度調整效率(50 nm/□C)。最終在採用順向激發架構下,200mW的980nm激發功率可得到6dB的增益,並改善了1490-nm S頻帶摻鉺光纖放大器的飽和輸入功率和飽和輸出功率,分別可達到8.8 dBm和12.2 dBm,這些結果已經比過去一些高增益S頻帶摻鉺光纖放大器的例子還要佳。只要能使用更長的摻鉺光纖並在其中置放更多的C頻帶放大自發幅射濾波器,將可得到更高的增益和更高的飽和輸出功率。
References
[1.1] R. I. Laming, M. N. Zervas, and D. N. Payne, “Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise-figure,” IEEE Photon. Technol. Lett. 4, 1345-1347 (1992).
[1.2] N. K. Chen, C. M. Hung, S. Chi, and Y. Lai, “Towards the short-wavelength limit lasing at 1450 nm over 4I13/2 □ 4I15/2 transition in silica-based erbium-doped fiber,” Opt. Express 15, 16448-16456 (2007).
[1.3] M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, “S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm,” in Proc. of OFC 2003, WK2 (2003).
[1.4] M. A. Arbore, “Application of fundamental-mode cutoff for novel amplifiers and lasers,” in Proceedings of Optical Fiber Communication Conference OFC’05 (Optical Society of America, Washington, D.C., 2005), paper OFB4.
[1.5] N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, “Tunable Er3+-doped fiber amplifiers covering S and C + L bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters,” Opt. Lett. 31, 2842-2844 (2006).
[1.6] C. M. Hung, N. K. Chen, Y. Lai, and S. Chi, “Double-pass high-gain low-noise EDFA over S- and C+L-bands by tunable fundamental-mode leakage loss,” Opt. Express 15, 1454-1460 (2007).
[1.7] H. Ono, M. Yamada, and M. Shimizu, “S-band erbium-doped fiber amplifiers with a multistage configuration□design, characterization, and gain tilt compensation,” J. Lightwave Technol. 21, 2240-2246 (2003).
[1.8] E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, New York, 1994), Chap. 4.
[1.9] S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap.3.
[1.10] W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004-1010 (1991).
[1.11] C. R. Giles, and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271- 283 (1991).
[1.12] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1998), Chap. 6.
[1.13] Y. Mita, T. Yoshida, Y. Yagami, and S. Shionoya, “Luminescence and relaxation processes in Er3+-doped glass fibers,” J. Appl. Phys. 71, 938-941 (1992).
[2.4] J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibres,” Opt. Commun., vol. 204, pp. 111-118, 2002.
[2.5] K. Morishita, “Optical fiber devices using dispersive materials,” J. Lightwave Technol., vol. 7, pp. 198-201, 1989.
[2.6] K. Morishita, “Bandpass and band-rejection filters using dispersive fibers,” J. Lightwave Technol., vol. 7, pp. 816-819, 1989.
[2.7] N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. vol., 29, pp. 2219-2221, 2004.
[2.8] P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett., vol. 70, pp. 3588-3591, 1993.
[2.9] M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol., vol. 14, pp. 2338-2343, 1996.
[2.10] H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, “Fluorine-doped SiO2 glasses for F-2 excimer laser optics: fluorine content and color-center formation,” Opt. Lett., vol. 24, pp. 1549-1551, 1999.
[2.13] R. Zengerle and O. Leminger, “Narrow-band wavelength-selective directional couplers of dissimilar single-mode fibers,” J. Lightwave Technol. LT-5, pp. 1196-1198, 1987.
[2.14] C. J. Chung and A. Safaai-Jazi, “Narrow-band spectral filters made of W-index and step-index fibers,” J. Lightwave Technol., vol. 10, pp. 42-45, 1992.
[2.15] M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, pp. 535-542, 1982.
[2.16] M. A. Arbore, “Application of fundamental-mode cutoff for novel amplifiers and lasers,” in Optical Fiber Communication Conference OFC’05 (Optical Society of America, Washington, D.C., 2005), paper OFB4.
[2.17] N. K. Chen, S. Chi, S. M. Tseng, and Y. Lai, “Wavelength-tunable fiber co-directional coupler filter based on asymmetric side-polished fiber coupler with local dispersive intermediate layer,” submitted to ECOC 2006 conference.
[2.18] N. K. Chen and S. Chi, “Influence of a holey cladding structure on the spectral characteristics of side-polished endlessly single-mode photonic crystal fibers,” accepted by Opt. Lett. (2006).
[3.1] N. K. Chen, K. C. Hsu, H. J. Chang, S. Chi, and Y. Lai, “Tunable Er3+/Yb3+ codoped fiber amplifiers covering S- and C-Bands (1460 ~ 1580 nm) based on discrete fundamental-mode cutoff,” in Proceedings of OFC 2006 conference, Anaheim, USA, Mar. 5-10, 2006. OThJ5.
[3.2] N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29, 2219-2221 (2004).
[3.3] J. Villatoro, D. Monzon-Hernandez, and D. Luna-Moreno, “In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material,” IEEE Photon. Technol. Lett. 17, 1665-1667 (2005).
[4.1] N. K. Chen and S. Chi, “Spectral characteristics of side-polished endlessly single-mode photonic crystal fiber: waveguide dispersion,” in proceedings of OFC 2006 conference, Anaheim, USA, Mar. 5-10, 2006. OWI5