簡易檢索 / 詳目顯示

研究生: 陳聿辰
論文名稱: 閘極調變旋轉堆疊雙層石墨烯載子不對稱性之研究
Gating Electron-Hole Asymmetry in Twisted Bilayer Graphene
指導教授: 邱博文
口試委員: 陳俊維
李奎毅
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 石墨烯單晶拉曼馬鞍點凡霍夫奇異點旋轉堆疊雙層石墨烯
外文關鍵詞: graphene, single crystal, Ramam, saddle points, Van Hove singularlities, twisted bilayer graphene
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2004年英國曼徹斯特大學Andre Geim及Konstantin Novoselov將利用膠帶從高定向熱裂解石墨(HOPG)分離出單原子的石墨烯,證實了二維材料可穩定單獨存,吸引了眾多科學家投入二維材料的研究。2009年,Ruoff團隊發展出利用銅作為催化劑成長石墨烯之後,以化學氣相沉積法成長石墨烯的技術已漸漸成熟,可以合成大面積與高品質的石墨烯供應科學上的研究或工業上的應用。在層數為雙層以上石墨烯其能帶結構會受到碳原子堆疊情形的影響而發生改變,然而大部份以化學氣相沉積法製備出的石墨烯大多為多晶,因此不利於科學上進行定性的分析。本論文同樣利用銅基板當作催化劑,透過精準調控成長參數,成功地合成出單晶雙層與三層石墨烯,並利用拉曼光譜與穿透式電子顯微鏡分析與判斷石墨烯層層間的堆疊情形。
    在狄拉克點附近對稱且線性的電子能帶結構,使石墨烯擁有獨特的電子與電洞對稱性。在旋轉堆疊雙層石墨烯中,由於兩層石墨烯之間的強交互作用力,使得導電帶與價電帶出現如馬鞍狀能帶區,光激發電子與聲子可在此產生強烈的共振散射。本論文藉由對旋轉堆疊雙層石墨烯施加一閘極偏壓,使上下層石墨烯感應出不同濃度的載子,造成能帶結構對稱性的改變,使共振散射消失。從拉曼光譜的變化,我們可以了解給予雙層石墨烯不等電位下之電聲子交互作用關係,於光電子元件應用的前瞻研究有很大的貢獻。


    論文摘要 I 致謝 V 目錄 VII 第一章 緒論 1 1.1 碳材料簡介 1 1.2 石墨烯的發現 3 1.3 論文結構 5 第二章 石墨烯 7 2.1 石墨烯晶體結構 7 2.2 石墨烯電子能帶 10 2.3 石墨烯聲子能帶 15 2.4 石墨烯製備-化學氣相沉積法 16 第三章 拉曼光譜 19 3.1 拉曼效應 19 3.1.1 拉曼散射基本原理 19 3.1.2 共振拉曼散射 22 3.1.3 拉曼光譜的數學描述 23 3.2 拉曼光譜在石墨烯檢測上的應用 25 3.2.1 石墨烯的聲子色散關係 25 3.2.2 石墨烯的一階與二階拉曼散射 27 3.2.3 拉曼光譜中的聲子能量 29 3.2.4 激發光能量與峰值關係 30 3.2.5 石墨烯摻雜對拉曼光譜的影響 31 3.3 雙層石墨烯拉曼光譜 32 3.3.1 AB堆疊雙層石墨烯 32 3.3.2 旋轉堆疊雙層石墨烯 33 第四章 單晶雙層石墨烯的合成與分析 41 4.1 實驗準備 41 4.2 石墨烯合成與轉移 13 4.3 拉曼分析 47 第五章 單晶三層石墨烯的合成與分析 51 5.1 單晶三層石墨烯的合成 51 5.2 石墨烯成長機制 53 5.3 拉曼與TEM分析 57 第六章 閘極偏壓量測與分析 65 6.1 理論預測 65 6.1.1 旋轉堆疊雙層石墨烯能帶 65 6.1.2 閘極偏壓下的電荷分布 67 6.2 元件製作 69 6.3 閘極偏壓與拉曼量測 71 6.3.1 元件背閘極測試 71 6.3.2 拉曼量測 72 6.3.3 閘極偏壓對G峰的影響 75 6.3.4 閘極偏壓對2D峰的影響 77 6.4 閘極偏壓等效旋轉角度換算 82 第七章 結論與展望 83 參考文獻 87

    [1] Scarselli, M.; Castrucci, P.; De Crescenzi, M. Electronic and Optoelectronic Nano-Devices Based on Carbon Nanotubes. J. Phys.: Condens. Matter 2012, 24.

    [2] Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. C-60 - Buckminsterfullerene. Nature 1985, 318, 162-163.

    [3] Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C-60 - a New Form of Carbon. Nature 1990, 347, 354-358.

    [4] Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; PhilipWong, H. S.; Mitra, S. Carbon Nanotube Computer. Nature 2013, 501, 526-+.

    [5] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.

    [6] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351-355.

    [7] Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown Current Density of Graphene Nanoribbons. Appl. Phys. Lett. 2009, 94.

    [8] Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328, 213-216.

    [9] Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement Of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.

    [10] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308.

    [11] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-Temperature Quantum Hall Effect in Graphene. Science 2007, 315, 1379-1379.

    [12] Partoens, B.; Peeters, F. M. From Graphene to Graphite: Electronic Structure around the K Point. Phys. Rev. B 2006, 74.

    [13] Latil, S.; Henrard, L. Charge Carriers in Few-Layer Graphene Films. Phys. Rev. Lett. 2006, 97.

    [14] Wallace, P. R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622-634.

    [15] Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47-57.

    [16] Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201-204.

    [17] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197-200.

    [18] Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109-162.

    [19] Maultzsch, J.; Reich, S.; Thomsen, C.; Requardt, H.; Ordejon, P. Phonon Dispersion in Graphite. Phys. Rev. Lett. 2004, 92.

    [20] Dresselhaus, M. S.; Jorio, A.; Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu. Rev. Conden. Matt. Phys. 2010, 1, 89-108.
    [21] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282-286.

    [22] Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191-1196.

    [23] Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; de Heer, W. A. Scalable Templated Growth of Graphene Nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727-731.

    [24] Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A. Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness. Carbon 2007, 45, 2017-2021.

    [25] Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene Segregated on Ni Surfaces and Transferred to Insulators. Appl. Phys. Lett. 2008, 93.

    [26] Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.

    [27] Ferraro, J. R.; Nakamoto, K.; Brown, C. W. Introductory Raman Spectroscopy. Elsevier: 2003.

    [28] Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy. Academic Press: 1990.

    [29] Reich, S.; Thomsen, C. Raman Spectroscopy of Graphite. Philos T R Soc A 2004, 362, 2271-2288.

    [30] Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett. 2004, 93.

    [31] Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A. C.; Robertson, J. Phonon Linewidths and Electron-Phonon Coupling in Graphite and Nanotubes. Phys. Rev. B 2006, 73.

    [32] Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys Rep 2009, 473, 51-87.

    [33] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97.
    [34] Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98.

    [35] Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210-215.

    [36] Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1291.

    [37] Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(000"1" ̅). Phys. Rev. Lett. 2008, 101, 156801.

    [38] Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Paniago, R.; Pimenta, M. A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.

    [39] Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y. W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. Landau-Level Splitting in Graphene in High Magnetic Fields. Phys. Rev. Lett. 2006, 96, 136806.

    [40] Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Raman Scattering from High-Frequency Phonons in Supported N-Graphene Layer Films. Nano Lett. 2006, 6, 2667-2673.

    [41] Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 2012, 108, 246103.

    [42] Havener, R. W.; Zhuang, H. L.; Brown, L.; Hennig, R. G.; Park, J. Angle-Resolved Raman Imaging of Inter layer Rotations and Interactions in Twisted Bilayer Graphene. Nano Lett. 2012, 12, 3162-3167.

    [43] Lu, C. C.; Lin, Y. C.; Liu, Z.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Twisting Bilayer Graphene Superlattices. ACS Nano 2013, 7, 2587-2594.

    [44] Carozo, V.; Almeida, C. M.; Ferreira, E. H. M.; Cancado, L. G.; Achete, C. A.; Jorio, A. Raman Signature of Graphene Superlattices. Nano Lett. 2011, 11, 4527-4534.

    [45] Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A. Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts. Nature 2011, 469, 389-392.

    [46] Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927-9933.

    [47] Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M.; Bao, X. H.; Cheng, H. M. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum. Nat. Commun. 2012, 3, 699.

    [48] Lin, Y. C.; Jin, C. H.; Lee, J. C.; Jen, S. F.; Suenaga, K.; Chiu, P. W. Clean Transfer of Graphene for Isolation and Suspension. ACS Nano 2011, 5, 2362-2368.
    [49] Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Graphene Annealing: How Clean Can It Be? Nano Lett. 2012, 12, 414-419.

    [50] Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making Graphene Visible. Appl. Phys. Lett. 2007, 91.

    [51] Craciun, M. F.; Russo, S.; Yamamoto, M.; Oostinga, J. B.; Morpurgo, A. F.; Tarucha, S. Trilayer Graphene Is a Semimetal with a Gate-Tunable Band Overlap. Nat. Nanotechnol. 2009, 4, 383-388.

    [52] Lui, C. H.; Li, Z. Q.; Mak, K. F.; Cappelluti, E.; Heinz, T. F. Observation of an Electrically Tunable Band Gap in Trilayer Graphene. Nat. Phys. 2011, 7, 944-947.

    [53] Morell, E. S.; Pacheco, M.; Chico, L.; Brey, L. Electronic Properties of Twisted Trilayer Graphene. Phys. Rev. B 2013, 87.

    [54] Correa, J. D.; Pacheco, M.; Morell, E. S. Optical Absorption Spectrum of Rotated Trilayer Graphene. J. Mater. Sci. 2014, 49, 642-647.

    [55] Xu, Z. P.; Buehler, M. J. Interface Structure and Mechanics Between Graphene and Betal Substrates: A First-Principles Study. J. Phys.: Condens. Matter 2010, 22.

    [56] Zuo, J. M.; Kim, M.; O'Keeffe, M.; Spence, J. C. H. Direct Observation of d-Orbital Holes and Cu-Cu Bonding in Cu2O. Nature 1999, 401, 49-52.

    [57] Chen, W. C.Layer by Layer Optical Exfoliation of Graphene. National Tsing Hua University, 2014.

    [58] Malard, L. M.; Guimaraes, M. H. D.; Mafra, D. L.; Mazzoni, M. S. C.; Jorio, A. Group-Theory Analysis of Electrons and Phonons in N-layer Graphene Systems. Phys. Rev. B 2009, 79.

    [59] Cong, C. X.; Yu, T.; Sato, K.; Shang, J. Z.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene. ACS Nano 2011, 5, 8760-8768.

    [60] San-Jose, P.; Prada, E. Helical Networks in Twisted Bilayer Graphene under Interlayer Bias. Phys. Rev. B 2013, 88, 121408(R).
    [61] de Laissardiere, G. T.; Mayou, D.; Magaud, L. Localization of Dirac Electrons in Rotated Graphene Bilayers. Nano Lett. 2010, 10, 804-808.

    [62] dos Santos, J. M. B. L.; Peres, N. M. R.; Castro, A. H. Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev. Lett. 2007, 99, 256802.

    [63] Sanchez-Yamagishi, J. D.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Yacoby, A.; Jarillo-Herrero, P. Quantum Hall Effect, Screening, and Layer-Polarized Insulating States in Twisted Bilayer Graphene. Phys. Rev. Lett. 2012, 108, 076601.

    [64] Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C. Electronic Properties of a Biased Graphene Bilayer. J. Phys.: Condens. Matter 2010, 22, 175503.

    [65] Gava, P.; Lazzeri, M.; Saitta, A. M.; Mauri, F. Ab Initio Study of Gap Opening and Screening Effects in Gated Bilayer Graphene. Phys. Rev. B 2009, 79, 165431.

    [66] Ohta, T.; Robinson, J. T.; Feibelman, P. J.; Bostwick, A.; Rotenberg, E.; Beechem, T. E. Evidence for Interlayer Coupling and Moire Periodic Potentials in Twisted Bilayer Graphene. Phys. Rev. Lett. 2012, 109, 186807.

    [67] Chen, C. F.; Park, C. H.; Boudouris, B. W.; Horng, J.; Geng, B. S.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.; Wang, F. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471, 617-620.

    [68] Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands. Phys. Rev. B 2011, 84, 035433.

    [69] Coh, S.; Tan, L. Z.; Louie, S. G.; Cohen, M. L. Theory of the Raman Spectrum of Rotated Double-Layer Graphene. Phys. Rev. B 2013, 88, 165431.

    [70] Ni, Z. H.; Wang, Y. Y.; Yu, T.; You, Y. M.; Shen, Z. X. Reduction of Fermi Velocity in Folded Graphene Observed by Resonance Raman Spectroscopy. Phys. Rev. B 2008, 77, 235403.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE