簡易檢索 / 詳目顯示

研究生: 林鼎浩
Tinghao Lin
論文名稱: 建構半導體製程資料挖礦架及其實證研究
Research on Constructing a Data Mining Framework for Semiconductor Manufacturing Data and the Empirical Study
指導教授: 簡禎富
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 102
中文關鍵詞: 決策分析資料挖礦晶圓圖WAT測試半導體製程資料事故診斷
外文關鍵詞: Decision Analysis, Data Mining, Wafer Bin Map, WAT test, Semiconductor Process Data, Defect Diagnosis
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體製造過程中,都會蒐集晶圓通過機台而自動化產生的參數資料或是以人工方式做紀錄的判斷資料來進行產品的監控或是故障分析,然而有時候工程師卻無法快速且有效從大量資料中找出事故發生原因。故本研究係建構半導體製程資料挖礦架構,針對製程資料進行分析,達到故障排除與良率提升的目的,分為問題定義與架構、資料準備、建立挖礦模式、到最後結果解釋與評估等四個階段,並具體說明每階段之內容。實證研究中對於兩種不同類型的製程資料,發展具體的資料挖礦架構,在實證一中,針對晶圓圖資料,利用類神經網路和空間統計檢定的方法,建構晶圓圖分類流程,藉由分群後的共同故障特徵圖形,幫助工程師快速追查問題發生的原因;在實證二中,針對製程及其相關機台時間資料,結合K-W統計檢定和決策樹分析方法,發展半導體WAT測試參數之事故診斷資料挖礦方法,快速找出發生問題的機台與時間,提供工程師解決問題的參考依據,最後兩個結果證實可幫助工程師縮短事故問題的時間與範圍。


    During the process of wafers in semiconductor manufacturing, many kinds of data will be collected automatically or manually to monitor the product. It is important to fix the problem of the manufacture process as soon as possible. However, the engineers sometimes can not find out the root-cause from the mass manufacturing data timely and rapidly. This research focused on constructing a conceptual framework for data mining of the semiconductor manufacturing. In this framework, there are four phases: problem definition and problem structuring, data preparation, modeling, and evaluation/ interpretation. Two empirical studies with different type of manufacturing data were applied to the framework. In the first empirical study, we focused on the wafer bin map data and constructed the clustering process by the neural network and the spatial statistic test. It can help engineers to find out the root-cause of problems through the cluster groups of common fail bin patterns. In the second empirical study, we developed the data mining methods of diagnosing defects of the WAT parameters and the related process information. In the use of decision tree and K-W test, we can extract the valuable information or knowledge for the domain engineers to identify the trouble process step. The final results of study showed the domain engineers could improve the effectiveness of trouble shooting.

    摘要 i Abstract ii 誌謝詞 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景及重要性 1 1.2 研究目的 2 1.3 論文結構與研究流程 2 第二章 文獻回顧 4 2.1 資料與企業整合 4 2.1.1資料的定義 4 2.1.2 資訊的定義 5 2.1.3 知識的定義 6 2.1.4 企業資料的整合 6 2.2 知識發現與資料挖礦 8 2.3 資料挖礦的方法 13 2.3.1 決策樹 13 2.3.2 類神經網路 15 2.3.3 群集分析 22 2.4 挖掘結果之類型 26 2.5 晶圓圖分類的方法 28 第三章 半導體製程資料挖礦架構 33 3.1 問題定義與架構 34 3.2 資料準備 34 3.2.1 瞭解資料 34 3.2.2 取得資料 36 3.2.3 檢視資料 37 3.2.4 格式化資料 37 3.2.5 選擇資料 38 3.3 建立模式 38 3.5 結果解釋與評估 40 第四章 實證研究 41 4.1 問題架構 42 4.1.1 晶圓處理製程 43 4.1.2 晶圓針測製程 46 4.1.3 製程資料蒐集流程 47 4.1.4 製程資料類別 48 4.2 實證一:建構晶圓圖分類之資料挖礦架構 50 4.2.1 選擇Bin值 51 4.2.2 資料檢視 52 4.2.3 資料轉換 52 4.2.4 強化特徵、過濾雜訊 54 4.2.5 圖形分類 55 4.2.6 圖形分群 58 4.2.7 相似性比對 63 4.2.8 圓圖分類的結果 64 4.3 實證二:建構半導體WAT與製程相關資料之事故診斷資料挖礦方法 80 4.3.1 資料準備 80 4.3.2 建立挖礦模式 82 4.3.3 解釋與評估 84 4.3.4 結果討論 86 第五章 結論 87 參考文獻 90 附件 98 附件一:138片原始晶圓圖 98 附件二:138片晶圓圖Odds Ratio統計報表 100 附件三:76片晶圓圖與24個樣版相似度比對之結果 104

    參考文獻
    林昇甫、洪成安(1996),類神經網路入門與圖樣辨識,全華科技,台北。
    李偉傑(1996),「半導體之工程資料分析與診斷系統」,國立清華大學工業工程與
    工業管理研究所碩士論文。
    林大欽(1997),「邏輯IC測試廠短期生產排程之探討」,國立清華大學工業工程與
    工業管理研究所碩士論文。
    陳鴻基、嚴紀中(1999),管理資訊系統,松崗,台北。
    陳順宇(1998),多變量分析,華泰,台北。
    莊達人(1999),VLSI製造技術,高立,台北。
    葉怡成(1999),類神經網路模式應用與實作,儒林,台北。
    趙豊昌(1997),「利用類神經網路建構之積體電路良率預估模式」,國立交通大學
    工業工程與管理研究所碩士論文。
    簡禎富、徐紹鐘、彭誠湧、林鼎浩(1999),「建構半導體製程事故資料挖礦方法及
    其實證研究」,中國工業工程學會88年度年會論文集,第114頁。
    簡禎富、徐紹鐘、彭誠湧、林鼎浩(2000),「建構晶圓圖分類之資料挖礦方法及其實證研究」,國科會工程處工業工程學門決策分析方法與應用研討會,第439-458頁。
    SAS 軟體股份有限公司(1999),Enterprise Miner V2.0資料挖礦軟體。
    著:Davenport, T.H. and Prusak L.,譯:胡瑋珊(1999),知識管理,聯經出版事業公司,台北
    Agresti, A. (1990), Categorical Data Analysis, John Wiley, New York.
    Alex, A. F., and Simon, H. L. (1998), Mining Very Large Databases With Parallel Processing, Kluwer Academic, Bosten.
    Apte, C., and Weiss, S. (1997), “Data Mining with Decision Tree and Decision Rules ”, Future Generation Computer Systems, vol 13, pp.197-210.
    Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996), “ Mining Business DataBase ”, Communication of ACM, vol.39, no.11, pp.42- 48.
    Baker M. D., Himmel C. D., and May G. S. (1995), “ Time Series Modeling of Reactive Ion Etching Using Neural Networks ”, IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 1, pp.62-71.
    Berry, M., and Linoff, G. (1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York.
    Breiman, L., Friedman, J. H., Olshen, R. J., and Stone, C. J. (1984), Classification and Regression Trees, Belmont, CA:Wadsworth.
    Chen, M.S., Han, J., and Yu, P.S. (1996), “ Data Mining:An Overview from a Database Perspective ”, IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp.866-883.
    Cabena, P., Hadjinian P., Stadler R., Verhess J., and Zanasi A. (1997), Discovering Data Mining From Concept to Implementatation, Prentice Hall PTR, Upper Saddle River, New Jersey.
    Cherkassky, V., and Mulier, F. (1998), Learning From Data: Concepts, Theory, and Methods, A Wiley Interscience Publication.
    Cunningham, S. P., Spanos, C. J., and Voros, K. (1995), “ Semiconductor Yield Improvement: Results and Best Practices ”, IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 2, pp.103-109.
    Collica R. S., Card J. P., and Martin W. (1995), “ SRAM Bitmap Shape Recognition and Sorting Using Neural Network ”, IEEE Transactions on semiconductor Manufacturing, vol. 8, no. 3, pp.326-332.
    Dhar V. and Stein R. (1997), Seven Methods for Transforming Corporate Data into
    Business Intelligence, Upper Saddle River, New Jersey.
    Evans, S., Lemon S., Deters, C., Fusaro, R., and Lynch, H. (1997), “ Automated Detection of hereditary Syndromes Using Data Mining ”, Computer and Biomedical Research, vol. 30, pp.337-348.
    Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “ The KDD Process for Extracting Useful Knowledge from Volumes of Data ”, Communication of ACM, vol. 39, no.11, pp.27-34.
    Fayyad, U. (1997), “ Data Mining and Knowledge Discovery in DataBase: Implication for Scientific Databases ”, Scientific and Statistical Database Management, pp.2-11.
    Fu, Y. (1997), “ Data Mining ”, IEEE Potentials, vol. 164, pp.18-20.
    Friedman, D. J., Hansen, M. H., Nair, V. N., and James, D. A. (1997), “Model –Free Estimation of Defect Clustering in Integrated Circuit Fabrication”, IEEE Transacations on Semiconductor Manufacturing, Vol. 10, No. 3, pp. 344-359.
    Ferris-Prabhu, A. V., Smith, L. D., Bonges, H. A., and Paulsen, J. K. (1987), “Radial Yield Variations in Semiconductor Wafers ”, IEEE Circuits and Devices Magazine, March, pp. 42-47.
    Freeman J.A., and Skapura D.M. (1991), Neural Networks: Algorithm, and Programming Techniques, Addison-Wesley.
    Garpenter G. A., and Grossberg S. (1987), “ART2: Self-organization of stable category recognition codes for analog input patterns”, Applied Optics, Vol. 26, No. 23, pp. 4919-4930.
    Garpenter G. A., and Grossberg S. (1987), “The ART of adaptive pattern recognition by a self-organizing neural network”, COMPUTER, vol. 21, No. 3, pp. 77-88.
    Garpenter G. A., and Grossberg S. (1990), “ART3: Hierarchical search using chemical transmitters in seif-organizing pattern recognition architectures”, Neural Networks, Vol. 3, pp. 129-152.
    Garpenter G. A., Grossberg S., and Rosen D.B. (1991), “Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system”, Neural Networks, vol. 4, pp. 759-771.
    Groth and Robert, (1998), Data mining:a hands-on approach for business professionals, Prentice Hall
    Gurney, K. (1997), An introduction to neural networks, UCL Press, London.
    Hansen, C. K., and Thyregod, P. (1998), “Use of wafer in integrated circuit manufacturing ”, Microelectronics Reliability, Vol. 38, pp. 1154-1164.
    Hansen, M. H., Nair, V. N., and Friedman, D. J. (1997), “Monitoring Wafer Map Data From Integrated Circuit Fabrication Processes for Spatially Clustered Defects ”, Technometrics, Vol. 39, No. 3, pp. 241-253.
    Han, S. S., Cai, L., May, G. S., and Rohatgi A. (1996), “ Modeling the Growth of PECVD Silicon Nitride Films for Solar Cell Applications Using Neural Networks ”, IEEE Transactions on semiconductor Manufacturing, vol. 9, no. 3, pp.303-311.
    Inmon, W. H. (1996), “ The Data Warehouse and Data Mining ”, Communication of ACM, vol.39, no.11, pp.49- 50.
    John, G. H., Miller, P., and Kerber, R. (1996), “ Stock Selection Using Rule Induction ”, IEEE Expert, vol.11, no.5, pp.52-58.
    Kleissner, C. (1998), “ Data Mining for the Enterprise ”, IEEE Proc. 31st Annual Hawaii International Conference on System Sciences, vol. 7, pp.295-304.
    Keki, B., Jie, C., Fayyad, U., and Qian, Z. (1993), “ Applying Machine Learning to Semiconductor Manufacturing ”, IEEE Expert, vol.8, no.1, pp.41-47.
    Kittler, R., and Wang, W. (1999),「資料分析漸露頭角」,中文半導體技術雜誌,第79-85頁。
    Kaempf, U. (1995), “ The Binomial Test: A Simple Tool to Identify Process Problems ”, IEEE Transactions on Semiconductor Manufacturing, Vol. 8, No. 2, pp. 160-166.
    Lin, Y. A. (1999), “ Parametric Wafer Map Visualization ”, IEEE Computer Graphics and Application, July/August, pp. 14-17.
    Mallory, C. L., Perloff D. S., Hasan, T. F., and Stanley, R. M. (1983), “Spatial Yield Analysis in Integrated Circuit Manufacturing ”, Solid State Technology, November, pp. 121-127.
    Mirza, A. I., Donoghue G., Drake A. W., and Graves, S. C. (1995), “Spatial Yield Modeling for Semiconductor Wafers ”, 1995 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 276-281.
    Milne, R., Drummond, M., and Renoux, P. (1998), “ Predicting paper making defect on-line using data mining ”, Knowledge-Based Systems , no.11, pp.331-338.
    Natale C. D., Proietti E., and Diamanti R. (1999), “ Modeling of APCVD-Doped Silicon Dioxide Deposition Process by a Modular Neural Network ”, IEEE Transactions on Semiconductor Manufacturing, vol. 12, no. 1, pp.109-115.
    Pyle, D. (1999), Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Francisco, California.
    Papows J.:著,李振昌:譯(1999),16定位,大塊文化,台北。
    Quinlan, J. R., (1986), “ Induction of decision tree ”, Machine Learning, vol.1, pp.81-106.
    Rao V.B., and Rao H.V. (1995), C++ Neural Networks and Fuzzy Logic, MIS:press, New York.
    Sharma, S. (1996), Applied Multivariate Techniques, John Wiley & Sons, New York.
    Steele, J.A., McArthur S.D.J., McDonald J.R., Goldstone, A.H., and Chopra, R. (1998), “ Knowledge Discovery in Medical Databases:What factors influence a successful bone marrow transplant for Hogkin’s Disease ”, IEE Colloquium on Knowledge Discovery and Data Mining, pp.1-8.
    Stapper, C.H., and Ronser, R. J. (1995), “ Integrated Circuit Yield Management and Yield Analysis : Development and implementation ”, IEEE Transactions on semiconductor Manufacturing, vol. 8, no. 2, pp.95-102.
    Taam, W., and Hamada, M. (1993), “Detect Spatial Effects From Factorial Experiments: An Application From Integrated-Circuit Manfacturing ”, Technometrics, vol. 35, no. 2, pp. 149-160.
    Wang, M. J., Chang, Y. S., Chen, J. E., Chen, Y. Y., and Shyu, S. C. (1996), “Yield Improvement by Test Error Cancellation ”, IEEE Proceeding of ATS’96, pp. 258- 262.
    Wang, P., Chan, M., Goodner, R., Lee, F. and Ceton, R. (1995), “ Development of the The Yield Enhancement System of A high-volume 8-inch Wafer Fab ”, International Symposium on semiconductor Manufacturing, pp.51-52.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE