研究生: |
吳玫萱 Wu, Mei-Hsuan |
---|---|
論文名稱: |
阻力訓練對視覺空間工作記憶之影響:事件相關電位研究 The Effect of Resistance Training on Visuospatial Working Memory: An ERP Study |
指導教授: |
詹雨臻
Chan, Yu-Chen |
口試委員: |
張育愷
Chang, Yu-Kai 曾鈺婷 Tseng, Yu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
清華學院 - 學習科學研究所 Institute of Learning Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 阻力訓練 、視覺空間工作記憶 、記憶負載量 、P2成分波 、P300成分波 |
外文關鍵詞: | resistance training, visuospatial working memory, memory load, P2, P300 |
相關次數: | 點閱:138 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工作記憶是指個體在進行複雜認知歷程時,對訊息同時進行短暫貯存及運作處理的能力。雖然運動對認知功能有益的效果已被科學所證實,然而,阻力運動對於認知功能的影響,尤其是對工作記憶功能的影響仍沒有一致的看法。本研究以18-30歲之無運動習慣之年輕人為對象,分派至實驗組(介入八周的阻力運動訓練)與控制組,使用改編版的Sternberg視覺空間工作記憶任務,透過事件相關電位實驗設計,實驗結果以單因子多變量共變數分析,將前測結果作為共變項排除,以了解運動介入與否在不同負載量的工作記憶歷程表現是否會造成差異。研究結果顯示,在工作記憶的登錄階段,實驗組比控制組有較大的P1、N1及P2振幅,以及較短的P2、P300潛伏期,且這些影響多以中或高負載的登錄刺激量效果才有顯著差異,此外控制組的P300振幅僅在低負載量下大於實驗組;在維持階段實驗組在中負載量下比控制組有較大的LPC振幅;提取階段則兩組在所有負載量下皆無顯著差異。本研究顯示出阻力運動對年輕人工作記憶帶來正面效益,尤其是對於工作記憶的登錄及維持歷程,如:可有效促進注意力資源的利用以及刺激評估處理,對於刺激評估、認知處理速度亦有促進效果,維持功能也較有效率。至於與過去研究較不一致的P300情境更新歷程指標,則推測與認知任務複雜度或運動劑量不足有關,本研究所採用的認知任務較為複雜且有難度,本研究所採用的認知任務較為複雜且有難度,因此推測本研究阻力運動對年輕人工作記憶影響與過去的研究不一致的可能原因,在於本研究與過去的研究使用的認知任務難易度或認知負荷不同。未來可進一步探究不同阻力運動劑量對於年輕人的認知影響,以建立認知促進相關的阻力運動介入之建議。
Working memory refers to the ability of individuals to simultaneously store and process messages while engaged in complex cognitive tasks. The beneficial effects of exercise on cognitive function have been confirmed. However, there is still no consensus on the effect of resistance exercise on cognitive functions, especially on working memory. The present study sought participants aged 18-30 who did not habitually exercise. They were assigned to either an exercise group (i.e. an 8-week resistance training intervention) or a control group, and assessed by means of a modified visuospatial Sternberg task, with event-related potentials recorded. The data were analyzed by one-way multivariate analysis of covariance (MANCOVA), with pretest results as covariance, to investigate whether the exercise intervention would affect the working memory performance of different loadings. The results showed that during the encoding phase, the exercise group exhibited higher amplitudes of P1, N1, and P2 as well as shorter P2 and P300 latency than the control group; most of the differences emerged at medium or high working memory loads. During the maintenance phase, the exercise group exhibited higher LPC amplitudes, while during the retrieval phase, no difference was found in the P300 amplitudes of the two groups. The present study thus revealed positive effects of resistance exercise on working memory in young adults, especially during the encoding and maintenance phase—promoting the use of attentional resources, the processing of stimulus assessment, retaining function and the speed of stimulus assessment and cognitive processing. The inconsistency of the P300 results with previous research may relate to cognitive task complexity or insufficient exercise dose. Since the cognitive tasks used in the present study were more complex and difficult than in previous studies, this could account for the apparent inconsistency. Future studies are needed to explore the impact of different resistance exercise doses.
中文文獻
1. 王駿濠、蔡佳良(2011)。急性運動對認知表現的影響。大專體育,112,31-39。
2. 林貴福(民87)。肌力與肌耐力訓練,取自http://www.nhcue.edu.tw/~linhan/fitness5.htm
3. 洪聰敏、石恒星(2009)。腦波在運動心理學研究之應用。應用心理研究,42, 123-161。
4. 約翰.瑞提、艾瑞克.海格曼(2010)。運動改造大腦:IQ和EQ大進步的關鍵。臺北:野人文化股份有限公司。
5. 張嘉芳、林耀豐(民98)。運動介入對反應時間的影響之探討。屏東教大體育,第12期。
6. 教育部體育署(民107)。106 年【運動現況調查】報告。取自https://isports.sa.gov.tw/Apps/TIS08/TIS0801M_01V1.aspx?MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=12&LEFT_MENU_ACTIVE_ID=26
7. 曾鈺婷、蔡佳良(2010)。阻力運動訓練對老年人認知功能之輔助效益。大專體育,111,75-82。
8. 楊坤祥、陳錦龍、洪聰敏、豐東洋(2001)。黃色與白色對反應時間和事件關連電位之影響。體育學報,31,59-70。
英文文獻
1. Alderman, B. L., Olson, R. L., & Brush, C. J. (2016). Using event-related potentials to study the effects of chronic exercise on cognitive function. International Journal of Sport and Exercise Psychology, 1-11.
2. Anderson-Hanley, C., Nimon, J. P., & Westen, S. C. (2010). Cognitive health benefits of strengthening exercise for community-dwelling older adults. Journal of Clinical and Experimental Neuropsychology, 32(9), 996-1001.
3. Anonymous. (2010, August). Resistance training (weight training; strength training). My virtual medical centre. Retrieved from https://www.myvmc.com/lifestyles/resistance-training-weight-training-strength-training/
4. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes1. In Psychology of learning and motivation (Vol. 2, pp. 89-195). Academic Press.
5. Azizian, A., & Polich, J. (2007). Evidence for attentional gradient in the serial position memory curve from event-related potentials. Journal of cognitive neuroscience, 19(12), 2071-2081.
6. Baddeley, A. (1986). Working memory. Oxford: Clarendon
7. Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
8. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5-28.
9. Baddeley, A. (2003). Working memory and language: An overview. Journal of communication disorders, 36(3), 189-208.
10. Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press.
11. Becke, A., Müller, N., Vellage, A., Schoenfeld, M. A., & Hopf, J. M. (2015). Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex. Neuroimage, 110, 78-86.
12. Best, J. R., Chiu, B. K., Hsu, C. L., Nagamatsu, L. S., & Liu-Ambrose, T. (2015). Long-term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. Journal of the international neuropsychological society, 21(10), 745-756.
13. Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports medicine, 32(9), 555-566.
14. Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose–response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology, 38(4), 396-408.
15. Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G. M., Tufik, S., Meeusen, R., & De Mello, M. T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309-317.
16. Cassilhas, R. C., Viana, V. A., Grassmann, V., Santos, R. T., Santos, R. F., Tufik, S. E. R. G. I. O., & Mello, M. T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine & Science in Sports & Exercise, 39(8), 1401-1407.
17. Chang, Y. K., & Etnier, J. L. (2009a). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise, 10(1), 19-24.
18. Chang, Y. K., & Etnier, J. L. (2009b). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640-656.
19. Chang, Y. K., Chu, I. H., Chen, F. T., & Wang, C. C. (2011). Dose-response effect of acute resistance exercise on Tower of London in middle-aged adults. Journal of Sport and Exercise Psychology, 33(6), 866-883.
20. Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013b). Physical activity and working memory in healthy older adults: an ERP study. Psychophysiology, 50(11), 1174-1182.
21. Chang, Y. K., Ku, P. W., Tomporowski, P. D., Chen, F. T., & Huang, C. C. (2012b). Effects of acute resistance exercise on late-middle-age adults' goal planning. Medicine and science in sports and exercise, 44(9), 1773-1779.
22. Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012a). The effects of acute exercise on cognitive performance: a meta-analysis. Brain research, 1453, 87-101.
23. Chang, Y. K., Pan, C. Y., Chen, F. T., Tsai, C. L., & Huang, C. C. (2012c). Effect of resistance-exercise training on cognitive function in healthy older adults: a review. Journal of aging and physical activity, 20(4), 497-517.
24. Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: general or specific cognitive improvement?. Journal of Science and Medicine in Sport, 17(1), 51-55.
25. Chang, Y. K., Tsai, Y. J., Chen, T. T., & Hung, T. M. (2013a). The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Experimental Brain Research, 225(2), 187-196.
26. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., ... & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
27. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological science, 14(2), 125-130.
28. Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience & Biobehavioral Reviews, 26(2), 105-125.
29. Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., & Holcomb, P. J. (2011). Mechanisms underlying age-and performance-related differences in working memory. Journal of cognitive neuroscience, 23(6), 1298-1314.
30. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of verbal learning and verbal behavior, 19(4), 450-466.
31. D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 761-772.
32. Donchin, E. (1981). Surprise!… surprise?. Psychophysiology, 18(5), 493-513.
33. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and brain sciences, 11(3), 357-374.
34. Dunn, B. R., Dunn, D. A., Languis, M., & Andrews, D. (1998). The relation of ERP components to complex memory processing. Brain and cognition, 36(3), 355-376.
35. Dunsky, A., Abu-Rukun, M., Tsuk, S., Dwolatzky, T., Carasso, R., & Netz, Y. (2017). The effects of a resistance vs. an aerobic single session on attention and executive functioning in adults. PloS one, 12(4), e0176092.
36. Ellemberg, D., & St-Louis-Deschênes, M. (2010). The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise, 11(2), 122-126.
37. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
38. Etnier, J. L., & Chang, Y. K. (2009). The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport and Exercise Psychology, 31(4), 469-483.
39. Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of sport and Exercise Psychology, 19(3), 249-277.
40. Fabiani, M., Karis, D., & Donchin, E. (1986). P300 and recall in an incidental memory paradigm. Psychophysiology, 23(3), 298-308.
41. Finnigan, S., O'Connell, R. G., Cummins, T. D., Broughton, M., & Robertson, I. H. (2011). ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology, 48(5), 601-611.
42. Freunberger, R., Klimesch, W., Doppelmayr, M., & Höller, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience letters, 426(3), 181-186.
43. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129(10), 2593-2608.
44. Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D'Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences.
45. Gunseli, E., Meeter, M., & Olivers, C. N. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60, 29-38.
46. Guo, C., Lawson, A. L., Zhang, Q., & Jiang, Y. (2008). Brain potentials distinguish new and studied objects during working memory. Human brain mapping, 29(4), 441-452.
47. Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., & Stern, Y. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Cognitive Brain Research, 23(2-3), 207-220.
48. Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Durrant, L. H., Hall, M. S., & Kang, K. D. (2016). Acute effects of 30 minutes resistance and aerobic exercise on cognition in a high school sample. Research quarterly for exercise and sport, 87(2), 214-220.
49. He, X., Zhang, W., Li, C., & Guo, C. (2015). Precision requirements do not affect the allocation of visual working memory capacity. Brain research, 1602, 136-143.
50. Henson, R. N. A., Burgess, N., & Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia, 38(4), 426-440.
51. Heyn, P. C., Johnsons, K. E., & Kramer, A. F. (2008). Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis. The Journal of Nutrition Health and Aging, 12(6), 401-409.
52. Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental psychology, 45(1), 114.
53. Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine & science in sports & exercise, 37(11), 1967-1974.
54. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 9(1), 58.
55. Hillman, C. H., Kamijo, K., & Scudder, M. (2011). A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Preventive medicine, 52, S21-S28.
56. Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1257-1270.
57. Hsieh, S. S., Chang, Y. K., Hung, T. M., & Fang, C. L. (2016). The effects of acute resistance exercise on young and older males' working memory. Psychology of Sport and Exercise, 22, 286-293.
58. James, M. S., Johnstone, S. J., & Hayward, W. G. (2001). Event-related potentials, configural encoding, and feature-based encoding in face recognition. Journal of Psychophysiology, 15(4), 275.
59. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363(6430), 623-625.
60. Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C. T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental science, 14(5), 1046-1058.
61. Karis, D., Fabiani, M., & Donchin, E. (1984). “P300” and memory: Individual differences in the von Restorff effect. Cognitive Psychology, 16(2), 177-216.
62. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.
63. Krafft, C. E., Schwarz, N. F., Chi, L., Weinberger, A. L., Schaeffer, D. J., Pierce, J. E., Rodrigue, A. L., Yanasak, N. E., Miller, P. H., Tomporowski, P. D., Davis, S. L., & McDowell, J. E., (2014). An 8‐month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity, 22(1), 232-242.
64. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil†, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418.
65. Kusak, G., Grune, K., Hagendorf, H., & Metz, A. M. (2000). Updating of working memory in a running memory task: an event-related potential study. International Journal of Psychophysiology, 39(1), 51-65.
66. Lachman, M. E., Neupert, S. D., Bertrand, R., & Jette, A. M. (2006). The effects of strength training on memory in older adults. Journal of aging and physical activity, 14(1), 59-73.
67. Lefebvre, C. D., Marchand, Y., Eskes, G. A., & Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116(7), 1665-1680.
68. Lenartowicz, A., Escobedo-Quiroz, R., & Cohen, J. D. (2010). Updating of context in working memory: an event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 298-315.
69. Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Ji, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PloS one, 9(6), e99222.
70. Linden, D. E., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., ... & Munk, M. H. (2003). Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage, 20(3), 1518-1530.
71. Liu-Ambrose, T., & Donaldson, M. G. (2009). Exercise and cognition in older adults: is there a role for resistance training programmes?. British journal of sports medicine, 43(1), 25-27.
72. Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010). Resistance training and executive functions: a 12-month randomized controlled trial. Archives of internal medicine, 170(2), 170-178.
73. Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M., & Handy, T. C. (2012). Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiology of aging, 33(8), 1690-1698.
74. Logie, R. H. (2003). Spatial and visual working memory: A mental workspace. In Psychology of learning and motivation (Vol. 42, pp. 37-78). Academic Press.
75. Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
76. Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100-108.
77. Manoach, D. S., Greve, D. N., Lindgren, K. A., & Dale, A. M. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage, 20(3), 1670-1684.
78. Mccarthy, G., Luby, M., Gore, J., & Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. Journal of Neurophysiology, 77(3), 1630-1634.
79. McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77-94.
80. McDowell, K., Kerick, S. E., Santa Maria, D. L., & Hatfield, B. D. (2003). Aging, physical activity, and cognitive processing: an examination of P300. Neurobiology of aging, 24(4), 597-606.
81. McEvoy, L. K., Smith, M. E., & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cerebral cortex (New York, NY: 1991), 8(7), 563-574.
82. Mecklinger, A., & Müller, N. (1996). Dissociations in the processing of “what” and “where” information in working memory: An event-related potential analysis. Journal of Cognitive Neuroscience, 8(5), 453-473.
83. Mecklinger, A., von Cramon, D. Y., & Matthes-von Cramon, G. (1998). Event-related potential evidence for a specific recognition memory deficit in adult survivors of cerebral hypoxia. Brain: a journal of neurology, 121(10), 1919-1935.
84. Menten, B., Maas, N., Thienpont, B., Buysse, K., Vandesompele, J., Melotte, C., ... & Janssens, S. (2006). Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. Journal of medical genetics, 43(8), 625-633.
85. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.
86. Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L., & Linden, D. E. (2008). Working memory load for faces modulates P300, N170, and N250r. Journal of cognitive neuroscience, 20(6), 989-1002.
87. Mu, Q., Mishory, A., Johnson, K. A., Nahas, Z., Kozel, F. A., Yamanaka, K., ... & George, M. S. (2005). Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep, 28(4), 433-448.
88. Müller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience, 139(1), 51-58.
89. Nagamatsu, L. S., Handy, T. C., Hsu, C. L., Voss, M., & Liu-Ambrose, T. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archives of internal medicine, 172(8), 666-668.
90. Natale, E., Marzi, C. A., Girelli, M., Pavone, E. F., & Pollmann, S. (2006). ERP and fMRI correlates of endogenous and exogenous focusing of visual‐spatial attention. European Journal of Neuroscience, 23(9), 2511-2521.
91. Otten, L. J., & Donchin, E. (2000). Relationship between P300 amplitude and subsequent recall for distinctive events: Dependence on type of distinctiveness attribute. Psychophysiology, 37(5), 644-661.
92. Özkaya, G. Y., Aydin, H., Toraman, F. N., Kizilay, F., Özdemir, Ö., & Cetinkaya, V. (2005). Effect of strength and endurance training on cognition in older people. Journal of sports science & medicine, 4(3), 300.
93. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342.
94. Paynter, C. A., Reder, L. M., & Kieffaber, P. D. (2009). Knowing we know before we know: ERP correlates of initial feeling-of-knowing. Neuropsychologia, 47(3), 796-803.
95. Peig-Chiello, P., Perrig, W. J., Ehrsam, R., Staehelin, H. B., & Krings, F. (1998). The effects of resistance training on well-being and memory in elderly volunteers. Age and ageing, 27(4), 469-475.
96. Pinal, D., Zurrón, M., & Díaz, F. (2015). Age-related changes in brain activity are specific for high order cognitive processes during successful encoding of information in working memory. Frontiers in aging neuroscience, 7, 75.
97. Polich, J. (2003). Theoretical overview of P3a and P3b. In Detection of change (pp. 83-98). Springer, Boston, MA.
98. Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148.
99. Polich, J. (2012). Neuropsychology of P300. Oxford handbook of event-related potential components, 159-188.
100. Pontifex, M. B., Hillman, C. H., & Polich, J. (2009b). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46(2), 379-387.
101. Pontifex, M. B., Hillman, C. H., Fernhall, B. O., Thompson, K. M., & Valentini, T. A. (2009a). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927-934.
102. Prakash, R. S., Voss, M. W., Erickson, K. I., & Kramer, A. F. (2015). Physical activity and cognitive vitality. Annual review of psychology, 66, 769-797.
103. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the National Academy of Sciences, 96(11), 6558-6563.
104. Rypma, B., & D'Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature neuroscience, 3(5), 509.
105. Saliasi, E., Geerligs, L., Lorist, M. M., & Maurits, N. M. (2013). The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS One, 8(5), e63701.
106. Salmon, E., Van der Linden, M., Collette, F., Delfiore, G., Maquet, P., Degueldre, C., ... & Franck, G. (1996). Regional brain activity during working memory tasks. Brain, 119(5), 1617-1625.
107. Santesso, D. L., Meuret, A. E., Hofmann, S. G., Mueller, E. M., Ratner, K. G., Roesch, E. B., & Pizzagalli, D. A. (2008). Electrophysiological correlates of spatial orienting towards angry faces: a source localization study. Neuropsychologia, 46(5), 1338-1348.
108. Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2017). Comparison of the working memory load in n-back and working memory span tasks by means of eeg frequency band power and p300 amplitude. Frontiers in human neuroscience, 11, 6.
109. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral cortex, 6(1), 11-20.
110. Soga, K., Masaki, H., Gerber, M., & Ludyga, S. (2018). Acute and long-term effects of resistance training on executive function. Journal of Cognitive Enhancement, 1-8.
111. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652-654.
112. Studer, P., Wangler, S., Diruf, M. S., Kratz, O., Moll, G. H., & Heinrich, H. (2010). ERP effects of methylphenidate and working memory load in healthy adults during a serial visual working memory task. Neuroscience letters, 482(2), 172-176.
113. Suriya-Prakash, M., & Sharma, R. (2015). A novel visuospatial working memory task to explore the effect of memory load and performance. International Journal of Brain and Cognitive Sciences, 4(1), 3-7.
114. Taylor, M. J., Smith, M. L., & Iron, K. S. (1990). Event-related potential evidence of sex differences in verbal and nonverbal memory tasks. Neuropsychologia, 28(7), 691-705.
115. The World Health Organization (2010),Global recommendations on physical activity for health,Retrieved from http://www.who.int/dietphysicalactivity/publications/9789241599979/en/
116. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751.
117. Tsai, C. L., & Wang, W. L. (2015). Exercise-mode-related changes in task-switching performance in the elderly. Frontiers in behavioral neuroscience, 9, 56.
118. Tsai, C. L., Wang, C. H., Pan, C. Y., & Chen, F. C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers in behavioral neuroscience, 9, 23.
119. Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., ... & Isaka, T. (2017). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PloS one, 12(9), e0184075.
120. Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’and ‘where’in the human brain. Current opinion in neurobiology, 4(2), 157-165.
121. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95(3), 883-890.
122. Van Dillen, L. F., & Derks, B. (2012). Working memory load reduces facilitated processing of threatening faces: an ERP study. Emotion, 12(6), 1340.
123. Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190-203.
124. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748.
125. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500.
126. Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in cognitive sciences, 17(10), 525-544.
127. Westcott, W. L. (2012). Resistance training is medicine: effects of strength training on health. Current sports medicine reports, 11(4), 209-216.
128. Wolach, I., & Pratt, H. (2001). The mode of short-term memory encoding as indicated by event-related potentials in a memory scanning task with distractions. Clinical neurophysiology, 112(1), 186-197.
129. Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic bulletin & review, 15(1), 223-229.
130. Woodward, T. S., Cairo, T. A., Ruff, C. C., Takane, Y., Hunter, M. A., & Ngan, E. T. (2006). Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory. Neuroscience, 139(1), 317-325.
131. Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29(10), 3059-3066.
132. Zanto, T. P., Toy, B., & Gazzaley, A. (2010). Delays in neural processing during working memory encoding in normal aging. Neuropsychologia, 48(1), 13-25.