簡易檢索 / 詳目顯示

研究生: 陳韋豪
Chen, Wei-Hao
論文名稱: 經由新穎的極大極小時間數位轉換器達成快速地監控峰對峰值抖動
Rapid Peak-to-Peak Jitter Monitoring by a Novel min-MAX Time-to-Digital Converter
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 呂學坤
周永發
蒯定明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 37
中文關鍵詞: 峰對峰抖動監控時間數位轉換器
外文關鍵詞: Peak-to-Peak Jitter
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文提出了一個以標準元件庫內的元件為基礎建構的全數位抖動量測電路,其核心電路MIN MAX類比數位轉換器是由傳統的脈衝寬度衰減類比數位轉換器改良而來。雖然需要付出的面積代價是傳統脈衝寬度衰減類比數位轉換器的2.5倍,但MIN MAX類比數位轉換器的實現是不可小覷的。最主要的特色是能夠在一個指定的測量時段內,即時地回報待測時脈訊號的峰對峰值抖動並且不需要參考時脈訊號。更具體地說,提出的抖動量測電路可以量化待測時脈訊號所有輸入週期的資訊,即使這些週期樣本是被連續輸入的。 因此,相較於傳統的抖動量測電路,我們所提出的解決方案可以節省94.3%的資料處理時間。
    所提出的解決方案已經被實現在90奈米製程下,且為了更貼近實際情況,加入了我們實驗室發表的全數位鎖相迴路用以產生的待測時脈訊號供抖動量測電路測量。根據電晶體層級的模擬,實驗數據顯示提出的MIN MAX類比數位轉換器測量待測時脈訊號峰對峰值抖動所得到的相對數位碼與待測時脈訊號的峰對峰值抖動呈現高度正相關。 此外,實驗結果也顯示我們只需要付出所提出抖動量測電路7.0%的面積去建立一個用於調整全數位鎖相迴路內濾波器參數的回授調整電路,那麼我們能夠獲得潛在的峰對峰抖動減少量是21.3%。


    This thesis proposes a cell-based all-digital jitter measurement circuit based on the standard cell library. The core circuit of the MIN MAX time-to-digital converter is an improvement from the traditional pulse-shrinking based time-to-digital converter. Although the area overhead is 2.5 times that of the traditional pulse-shrinking based time-to-digital converter, the implementation of the MIN MAX time-to-digital converter is non-trivial. The most important feature is that it can report the peak-to-peak jitter of the clock under measurement within a specified measurement interval in real time and does not need reference clock. Specifically, it can derive the all-period information of clock under measurement, even if the period samples are inputted continuously. Therefore, our solution can save 94.3% of the data processing time compared to conventional jitter measurement.
    The proposed solution has been implemented in the 90-nm CMOS process, and in order to get closer to the actual situation, we have imported an all-digital phase-locked loop (ADPLL) published by our laboratory to generate the clock under measurement for the jitter measurement circuit. According to the transistor level simulation, the experimental data shows that the relative digital code obtained by the proposed MIN MAX time-to-digital converter to measure the peak-to-peak jitter of the clock under measurement is highly positively correlated with the peak-to-peak jitter of the clock under measurement. Moreover, the experimental results also show that we only require the 7.0% area overhead of proposed jitter measurement for feedback tuner which is used to tune the parameter of loop filter of ADPLL, then we can acquire the potential peak-to-peak jitter reduction is 21.3%.

    Abstract i 摘要 ii 致謝 iii Content iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Organization of Thesis 5 Chapter 2 Revisit Pulse Shrinking-Based Time-to-Digital Converter 6 2.1 Operational Principal of Pulse Shrinking TDC 6 2.2 Restriction of Pulse Shrinking TDC 7 Chapter 3 Proposed Solution 8 3.1 The idea of Min Max TDC 8 3.2 Architecture of Proposed Jitter Measurement 9 3.3 Overall Prodecure 10 Chapter 4 Circuit Implementation 11 4.1 Sampler 11 4.2 Min Max TDC 12 4.3 Encoder 21 Chapter 5 Experimental Results 22 5.1 Layout 22 5.2 Functional Waveform 25 5.3 Performance Compared Table 33 Chapter 6 Conclusion 34 References 35

    [1] K.A. Jenkins, A.P. Jose and D.F. Heidel, “An on-chip jitter measurement circuit with sub-picosecond resolution”, Proc. Of European Solid-State Circuits Conference (ESSCIRC), Vol. 22, No. 3, pp. 157-160, Sept. 2005.
    [2] T. Xia, H. Zheng, J. Li and A. Ginawi, “Self-refereed on-chip jitter measurement circuit using Vernier oscillators”, Proc. of IEEE Computer Society Annual Symposium on VLSI, May 2005.
    [3] C.-Y. Li, C.-Y. Chou, and T.-Y. Chang. “A Self-Referred Clock Jitter Measurement Circuit in Wide Frequency Range.”In Proc. IEEE 15th Asian Test Symp., pp.313-317, Nov. 2006.
    [4] W. Tang, J. H. Feng, and C. L. Lee, "A Jitter Measurement Circuit Based On Dual Resolution Vernier Oscillator," Proceedings of the IEEE 8th International Conference on Asic, vols 1 and 2, pp. 1213-1216, 2009.
    [5] S.Y. Jiang, K.H. Cheng and P.Y. Jian, “A 2.5-GHz built-in jitter measurement system in a serial-link transceiver,” IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 12, pp. 1698-1708, Dec. 2009.
    [6] J. Yu and F. F. Dai, "On-chip jitter measurement using vernier ring time-to-digital converter," Asian Test Symposium, pp. 167-170, 2010.
    [7] K. Niitsu, M. Sakurai, N. Harigai, et al., "An on-chip timing jitter measurement circuit using a self-referenced clock and a cascaded time difference amplifier with duty-cycle compensation," in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 201-204.

    [8] C.-C. Chung, W.-J. Chu, "An All-Digital On-Chip Jitter Measurement Circuit in 65nm CMOS technology", International Symposium on VLSI Design, Automation and Test, 25-28 Apri. 2011, Hsinchu, Taiwan, pp. 1-4.
    [9] K.H. Cheng, J.C. Liu, C.Y. Chang et al., "Built-in jitter measurement circuit with calibration techniques for a 3-GHz clock generator", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 8, pp. 1325-1335, 2011.
    [10] S. Abdel-Hafeez, S. M Harb, "On-chip jitter measurement architecture using a delay-locked loop with vernier delay line, to the order of giga hertz", Mixed Design of Integrated Circuits and Systems (MIXDES), 16-18 Jun. 2011, Gliwice, Poland, pp. 502-506
    [11] E. Gantsog, D. Liu, A. B. Apsel, "0.89 mW on-chip jitter-measurement circuit for high speed clock with sub-picosecond resolution", Proc. IEEE Eur. Solid-State Circuits Conf., pp. 457-460, Sep. 2016.
    [12] P.Y. Chou and J.S. Wang, “An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit With Automatic Resolution Calibration for High PVT-Variation Resilience”, IEEE Trans. on Circuit and System I: Regular Papers, pp. 2508-2518, July 2019.
    [13] H.-J. Hsu, S.-Y. Huang, "A low-jitter all-digital phase-locked loop using a suppressive digital loop filter", Proc. VLSI-DAT, pp. 158-161, 2009-Apr.
    [14] P.-Y. Chao, C.-W. Tzeng, S.-Y. Huang, C.-C. Weng, S.-C. Fang, "Process Resilient Low-Jitter All-Digital PLL via Smooth Code Jumping", IEEE Trans. on VLSI Systems, vol. 21, no. 12, pp. 2240-2249, Dec. 2013.
    [15] C.H. Wu, S.Y. Huang, M. Chern, Y.F. Chou and D.M. Kwai, “Resilient Cell-Based Architecture for Time-to-Digital Converter”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 7–12, July 2017.
    [16] C.E. Lee and S.Y. Huang, “A Cell-Based Fractional-N Phase-Locked Loop Compiler”, International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), pp. 273-276, July 2018.
    [17] James Wilson. Timing Jitter Tutorial & Measurement Guide. Retrieved from: ttps://www.silabs.com/documents/public/white-papers/timing-jitter-tutorial-and-measurement-guide-ebook.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE