簡易檢索 / 詳目顯示

研究生: 王偉仁
論文名稱: Al含量對AlxCoCrFeNi高熵合金系統微結構及機械性質之影響
Effects of Al content on the microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy system
指導教授: 葉均蔚
口試委員: 洪健龍
葉安洲
孫道中
張守一
葉均蔚
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 186
中文關鍵詞: 高熵合金高溫相變化高溫硬度
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究有鑑於Al-Co-Cr-Cu-Fe-Ni高熵合金系統中Cu元素大量偏析於樹枝間相且降低合金高溫強度的缺點,乃針對不含Cu的Al-Co-Cr-Fe-Ni高熵合金系統作研究。由於Al與過渡元素有較強的鍵結,對微結構及機械性質有明顯的影響,故本研究改變合金系統中的Al含量,以探討Al元素對AlxCoCrFeNi高熵合金系統微結構與機械性質的影響,同時藉由高溫XRD、DSC熱分析與SEM及TEM相鑑定,研究合金高溫相變化機制,並繪製AlxCoCrFeNi高熵合金系統之相圖。此外,本研究利用高溫硬度機對此合金系統在高溫下的變形行為加以探討。
    常溫下鑄態之AlxCoCrFeNi合金隨Al元素之添加,晶體結構會由FCC轉為FCC+BCC再轉為BCC。BCC結構的形成為合金硬化之主要因素。鑄態合金中之BCC相會藉由spinodal分解機構形成奈米級雙相結構。其中Al0.9CoCrFeNi合金具有最細的雙相微結構,使其具有最高硬度Hv 527。由化學成份分析顯示形成單相FCC結構之固溶體,合金中Al含量需低於11 at.%,而要形成單相BCC結構之固溶體,合金中Al含量至少高於18.4 at.%。
    AlxCoCrFeNi合金巨觀凝固組織隨Al添加量增加,由平面成長之晶粒結構轉變成柱狀之胞狀結構,再轉變成柱狀之樹枝狀結構,然後再轉變成具有針片狀組織的等軸晶粒結構、樹枝狀之等軸晶粒結構,此係由於Al含量增加,造成CoCrFeNi合金凝固時固液界面前緣液相之溫度梯度降低或組成過冷度增加所致。
    Al0–Al0.3 (FCC), Al0.5–Al0.7 (FCC+BCC) and Al1.5–Al1.8 (BCC)合金從室溫到熔點均保持相同的晶體結構。Al0.9–Al1.2合金在870 K以下為spinodal BCC+B2結構,約870 K會發生BCC轉變成FCC之相變化,然後約在927 K析出σ相並與富Fe、Cr的FCC相連接。σ相的溶解溫度約為1235 K,1235 K 以上為B2+FCC 雙相結構。
    AlxCoCrFeNi合金的高溫硬度轉換溫度(TT)範圍為810–930 K,Al0.5合金呈現最高的TT/Tm值。高於TT溫度的高溫區間,Al0–Al0.3合金具有最低的軟化係數,而Al0.9及Al1.0合金則具有最大的軟化係數,不過在973–1073 K溫度區間,這兩組合金會因σ相的析出而再硬化。
    由壓痕潛變試驗顯示,具有FCC單相的Al0.3合金主要變形機構為差排滑移,對於x ≥ 0.5的合金系統,在低於高溫硬度轉換溫度的低溫區間,合金的主要變形機構為差排滑移,而在高於高溫硬度轉換溫度的高溫區間,合金的主要變形機構為差排滑移與爬移(潛變)。


    目錄 i 圖目錄 iv 表目錄. xiii 第壹章 前言 1 第貳章 文獻回顧 4 2.1開發背景 5 2.2 高熵合金定義 6 2.3 高熵合金的特點 6 2.4 高熵合金研究發展結果 13 2.5 AlxCoCrFeNi合金研究發展結果 21 2.5.1添加合金元素強化 21 2.5.2熱處理方式強化合金 29 2.5.3 尺寸效應對AlCoCrFeNi合金機械性質的影響 32 2.6本研究之目的 34 第參章 實驗方法 35 3.1合金組成與合金製備 36 3.2微結構觀察與成分分析 40 3.2.1光學顯微鏡(OM) 40 3.2.2掃描式電子顯微鏡(SEM) 40 3.2.3穿透式電子顯微鏡(TEM) 40 3.3室溫與高溫X-ray繞射分析 41 3.4 DSC熱分析 42 3.5硬度及高溫硬度量測 42 3.6衝擊試驗 45 3.7密度量測 47 第肆章 結果與討論 48 4.1 Al含量對AlxCoCrFeNi高熵合金晶體結構影響 48 4.1.1常溫結晶結構分析 48 4.1.2 高溫結晶結構分析 57 4.2 AlxCoCrFeNi高熵合金熱分析 63 4.3 Al含量對AlxCoCrFeNi合金微結構的影響 69 4.3.1 常溫微結構分析 69 4.3.1.1 OM金相組織分析 69 4.3.1.2 SEM與TEM微觀組織分析 82 4.3.1.2.1 Spinodal分解 101 4.3.1.2.2 Spinodal 分解的熱力學條件 102 4.3.1.2.3 Spinodal分解之阻力 105 4.3.1.2.4 Spinodal 分解的判斷依據 107 4.3.1.2.5 Spinodal分解相的形態 110 4.3.1.2.6高熵合金系統中之Spinodal分解分析 114 4.3.2 高溫微結構分析 121 4.3.3 AlxCoCrFeNi高熵合金密度分析 136 4.4 AlxCoCrFeNi高熵合金機械性質 138 4.4.1 常溫硬度 138 4.4.2 常溫衝擊 144 4.4.3 高溫硬度 149 4.4.3.1高溫硬度轉換溫度及軟化速率 151 4.4.3.2壓痕潛變試驗 158 4.5 AlxCoCrFeNi高熵合金相圖 165 第伍章 結論 170 第陸章 研究貢獻 174 第柒章 建議未來研究方向 175 參考文獻 177

    [1] ASM handbook committee, Metals handbook, vol. 1, 10th ed., ASM International, Meterials Park, OH, 1990.
    [2] G.E. Totten, L. Xie, K. Funatani, Handbook of mechanical alloy design, Marcel Dekker Inc., New York, 2004.
    [3] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Current Science 8 (2003) 1404-1406.
    [4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
    [5] J.W. Yeh, S.K. Chen and Y.L. Chen, Novel alloy concept, challenges and opportunities of high-entropy alloys, in: B. Raj (editor-in-chief), Frontiers in the design of materials, CRC press, 2007, pp.31-47.
    [6] C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61 (2007) 1–5.
    [7] J.W. Yeh, Recent progress in high-entropy alloys, Ann Chim – Sci. Mater. 31 (2006) 633.
    [8] A.L. Greer, Confusion by design, Nature, 366 (1993) 303-304.
    [9] C.J. Tong, Y.L Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructural characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. 36A (2005) 881-893.
    [10] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. 36A (2005) 1263-1271.
    [11] J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear 261 (2006) 513-519.
    [12] C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61(2007) 1-5.
    [13] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, J. Alloys Comp. 485 (2009) L31-34.
    [14] K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Q.J. Zhang, J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng. A508 (2009) 214-219.
    [15] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Novel microstructure of multicomponent CoCrCuFeNiTix alloys, Intermetallics 15 (2007) 357-362.
    [16] B. Cantor, I.T.H.Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A375-377 (2004) 213-218.
    [17] Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kuo, J.W. Yeh, T.S. Chin, S.K. Chen, Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying, J. Alloys Comp. 477 (2009) 696-705.
    [18] Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system, J. Alloys Comp. 481 (2009) 768-775.
    [19] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
    [20] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Microstructural and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys, Mater. Sci. Eng. A 454-455 (2007) 260-265.
    [21] J.W. Yeh, S.K Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H, Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Matall. Mater. Trans. 35A (2004) 2533-2536.
    [22] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (2011) 698–706.
    [23] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Matall. Mater. Trans. 35A (2004) 1465-1469.
    [24] O.N. Senkov, G.B. Wilks D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (2010) 1758-1765.
    [25] P.K. Huang, J.W. Yeh, T.T. Shun, S.K.Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater. 6 (2004) 74-78.
    [26] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and electrochemical properties of high entropy alloys- a comparison with type-304 stainless steel, Corros. Sci. 47 (2005) 2257-2279.
    [27] Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys. 92 (2005) 112-117.
    [28] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, J. Alloys Comp. 488 (2009) 57–64.
    [29] C. Li, J.C. Li, M, Zhao, Q, Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, J. Alloys Comp. 504S (2010) S515–518.
    [30] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44–51.
    [31] Sheng Guo, Chun Ng, Jian Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J Appl. Phys. 109, (2011) 103505.
    [32] C.J. Tung, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, Microstructural characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. 36A (2005) 881–93.
    [33] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. 36A (2005) 1263–71.
    [34] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. 491 (2008) 154-158.
    [35] T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Comp. 478 (2009) 269-272.
    [36] T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloys Comp. 479 (2009) 157–160.
    [37] H.P. Chou, Y.S. Chang, S.K. Chen J.W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Mater. Sci. Eng. B163 (2009) 184–189.
    [38] Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Cho, J.W. Yeh, S.J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Comp. 509 (2011) 1607–1614.
    [39] Y.F. Kao, T.D. Lee, S.K. Che, Y.S. Chang, Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acid, Corros. Sci. 52 (2010) 1026–1034.
    [40] C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics 19 (2011) 288–294.
    [41] F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Eng. Mater. Technol. 131 (2009) 034501.
    [42] Y. Zhang, S.G. Ma, J.W. Qiao, Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi HEAs by copper mold casting and Bridgman solidification, Metall. Mater. Trans. 43A (2012) 2625–2630.
    [43] H.B. Cui, Y. Wang, J.Y. Wang, X.F. Guo d H.Z. Fu, Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy, China Foundry, 8 (2011) 259–263.
    [44] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature, Appl. Phys. Sci. 90 (2007) 181904.
    [45] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys, J. Alloys. Comp. 509 (2011) 3476–3480.
    [46] S.G. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A 532 (2012) 480–486.
    [47] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Microstructure and compressive properties of multiprincipal component AlCoCrFeNiMox alloys, Mater. Sci. Eng. A527 (2010) 6975–6979.
    [48] C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh and S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Mater. Sci. Eng. A 528 (2011) 3581–3588.
    [49] C.C. Juan, C.Y. Hsu, C.W. Tsai, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys, Intermetallics 32 (2013) 401–407.
    [50] C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design, JOM 64 (2012) 839–845.
    [51] R. A. Swalin, Thermodynamics of solids, John Wiley & Sons, Inc., 1972.
    [52] F. J. Wang, Y. Zhang, G. L. Chen, H. A. Davies, Tensile and Compressive Mechanical Behavior of a CoCrCuFeNiAl0.5 High Entropy Alloy, International Journal of Modern Physics B 23(2009) 1254.
    [53] C. W. Tsai, Y. L. Chen, M. H. Tsai, J. W. Yeh, T. T. Shun, S. K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd. 486 (2009) 427.
    [54] L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y. Xue, L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics 17 (2009) 266.
    [55] C. W. Tsai, M. H. Tsai, J. W. Yeh, C. C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd. 490 (2010) 160.
    [56] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy J. Alloys Compd. 502 (2010) 295.
    [57] S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater. 59 (2011) 182.
    [58] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Niessen, Cohesion in Metals. In: F. R. Boer, D. G. Perrifor, editors. Cohesion and Structure. Netherlands: Elsevier Science Publishers B.V., 1988.
    [59] C. Y. Hsu, T. S. Sheu, J. W. Yeh, S. K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear 268 (2010) 653.
    [60] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, J. W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44.
    [61] J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang, H. Li, Z. Q. Hu, Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox under-bar alloys, J. Alloys Compd. 497 (2010) 52.
    [62] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043–6048.
    [63] O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, C. F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J Mater. Sci. (2012) 47:4062–4074.
    [64] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311– 320.
    [65] O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J Mater. Sci. (2012) 47:6522–6534.
    [66] J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys, Mater. Sci. Eng. A 527 (2010) 7210–7214.
    [67] David W. Oxtoby, H. P. Gillis, Norman H. Nachtrieb: Principles of Modern Chemistry, 4th ed., Brooks/Cole Thomson Learning, 2002, pp. A.42-A.47.
    [68] H. Committee, ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990.
    [69] B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd ed., Prentice-Hall Inc., New Jersey, 2001.
    [70] C.C. Hsieh and W. Wu, Overview of intermetallic sigma (σ) phase precipitation in stainless steel, ISRN Metallurgy, 2012 (2012) 1–16.
    [71] Bodsworth C, Bell HB, Physical chemistry of iron and steel manufacture, 2nd Edition, Longman Group Limited 1972.
    [72] W. Kurz, D.J. Fisher, Fundamentals of solidification, 3rd. ed. Trans Tech Publications 1992.
    [73] M.C. Flemings, Solidification processing, McGraw-Hill Inc. 1974.
    [74] 陶杰、姚正軍、薛烽,材料科學基礎,化學工業出版社,北京(2006)。
    [75] D. Brandon and W.D. Kaplan, “Microstructural characterization of materials,” J.Wiley & Sons, Chichester, England, 1999.
    [76] J.A. Hanna, I. Baker, M.W. Wittmann, A new high-strength spinodal alloy, J. Mater. Res. 20 (2005) 791-795.
    [77] I. Baker, J.A. Hanna, M.W. Wittmann, Microstructure of a spinodal Fe-Ni-Mn-Al alloy, in Proc. Microsc. Microanal. (2005) 1864.
    [78] D.E. Laughlin, W.A. Soffa, Spinodal structure, in: Metals handbook, 9th ed., vol.9, ASM, 1985, pp.652-654.
    [79] J. Zhu, L.Q. Chen, J. Shen, Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity, Modelling Simul. Mater. Sci. Eng. 9 (2001) 499-511.
    [80] J.W. Martin, R.D. Doherty and B. Cantor, Stability of microstructure in metallic system, pp. 51-55, second edition, CUP, 1997.
    [81] A.K. Jena, M.C. Chaturvedi, Phase transformation in materials, Prentice Hall, Englewood, New Jersey, 1992.
    [82] A.J. Bradley, Proc. Phys. Soc. 52(1940)378.
    [83] Y.H. Wei and S.T. Wang, Experimental evidence for spinodal decomposition along with simultaneous ordering in Al-12.7 at.% Li alloy, Mater. Lett., vol. 28(1996)123-127.
    [84] Robert W. Balluffi, Samuel M. Allen, W. Craig Carter, Kinetics of Materials, John Wiley & Sons, Inc., Hoboken, New Jersey 2005.
    [85] J. Zhu, L.Q. Chen, J. Shen, Morphological evolution during phase separation and coarening with strong inhomogeneous elasticity, Modelling Simul. Mater. Sci. Eng. 9(2001)499-511.
    [86] Akira Onuki, Hiraku Nishimori, Anomalously slow domain growth due to a modulus inhomogeneous in phase-separation alloys, Phys. Rev. B Vol.43, No.16(1991)13649-13652.
    [87] Hiraku Nishimori, Akira Onuki, Pattern formation in phase-separation alloys with cubic symmetry, Phys. Rev. B Vol.42, No.1(1990)980-983.
    [88] J.W. Cahn, On spinodal decomposition, Acta Metall., vol. 9, 795-801 (1961).
    [89] J.A. Loudis and I. Baker, and – and –Mn precipitates in the spinodal Fe30Ni20Mn25Al25 alloy, Philo. Mag., vol. 87, 5639-5656 (2007).
    [90] S.H. Risbud, Spinodal decomposition, in: J.R. Groza et al., Materials Processing Handbook, pp. 4-1~8, CRC press, 2007.
    [91] C.M. F. Jantzen, H. Herman, Spinodal decomposition-phase diagram representation and occurrence, in: A.M. Alper, Phase diagrams: Materials Science and Technology, pp.127-184, 1978.
    [92] Lode Duprez, C. Bruno. De Cooman, Nurl Akdut, Redistribution of the substitututional elements during σ and χ phase formation in a duplex stainless steel, Steel Res., 72 (2001) No. 8, 311–316.
    [93] David K. Felbeck, Anthony G. Atkins, Strength and fracture of engineering solids, Prentice Hall, Inc., 1996.
    [94] J.W. Cahn, Hardening by spinodal decomposition, Acta Metall. 11 (1963) 1275-1282.
    [95] M. Kato, Hardening by spinodally modulated structure in b.c.c. alloy, Acta Metall. 29 (1981) 79-87.
    [96] David Broek, Elementary engineering fracture mechanics, 4th revised ed., Kluwer Academic Publishers, 1991.
    [97] V.J. Colangelo, F.A. Heiler, Analysis of metallurgical failures, 2nd ed., John Wiley & Sons (SEA) Pte. Ltd, 1989.
    [98] J.S. Westbrook, Temperature dependence of the hardness of pure metals, Transactions of the A.S.M. Vol. 45(1952)221-248.
    [99] G. Sharma, R.V. Ramanujan, T.R.G. Kutty, G.P. Tiwari, “Hot hardness and indentation creep studies of a Fe–28Al–3Cr–0.2C alloy”, Mater. Sci. Eng., A 278 (2000) 106–112.
    [100] K.B. Khana, T.R.G. Kutty, M.K. Surappa, Hot hardness and indentation creep study on Al–5% Mg alloy matrix–B4C particle reinforced composites, Mater. Sci. Eng. A 427 (2006) 76–82.
    [101] O.D. Sherby, “Factors affecting the high temperature strenge of polycrystalline solids”, Acta Mater., Vol. 10(Feb. 1962)135–147.
    [102] George E. Dieter, Mechanical metallurgy, McGraw-Hill Book Company, 1988.
    [103] 潘金生、仝健民、田民波,材料科學基礎,清華大學出版社,北京(1998)。
    [104] W.B. Li, J.L. Henshell, R.M. Hooper, K.E. Easterling, The Mechanisms of Indentation Creep, Acta metall. mater. Vol. 39, No. 12 (1991) 3099-3110.
    [105] W.B. Li, R. Warren, A model for nano-indentation creep, Acta Metall. Mater. 41, No.10 (1993) 3065–3069.
    [106] R.S. Sundar, T.R.G. Kutty, D.H. Sastry, Hot hardness and creep of Fe3Al-based alloys, Intermetallics 8 (2000) 427–437.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE