研究生: |
林基富 Chi Fu Lin |
---|---|
論文名稱: |
以溶膠-凝膠法合成有機/無機膜應用於燃料電池電解質 Synthesis of organic/inorganic membrane applied in fuel cell electrolytes through sol-gel processes |
指導教授: |
陳 建 瑞 博士
Jiann-Ruey Chen, Ph.D. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 有機/無機膜 、燃料電池 、電解質 、溶膠-凝膠法 、電化學阻抗頻譜儀 |
外文關鍵詞: | organic/inorganic membrane, fuel cell, electrolytes, sol-gel processes, EIS |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子傳導高分子膜提供包括燃料電池、電致變色窗、化學傳感器等等電化學元件一個新的工業技術應用。有機/無機混成膜藉由溶膠-凝膠法合成,為具有等向性、非晶結構的高分子材料。
本文以PEO分子量600摻雜可增加離子傳導的鹽類PWA,提升其離子導電率,以及摻雜可增加熱穩定性質的Mph增加裂解溫度。以電化學阻抗頻譜儀量測其離子導電率,摻雜PWA40%其離子導電率最佳可達10-4S/cm。以熱重量測定/熱差分析量測其熱穩定性質,其中以摻雜40%Mph之裂解溫度可達390℃。
Protonic conducting polymer membranes provide new technological applications in the electrochemical devices including fuel cell , electrochromic window, chemical sensors and etc. Organic / inorganic membranes are which have been synthesized through sol-gel process isotropic, amorphous.
The article reports that PEO molecular weight 600, blending with PWA which can increase ionic conduction can elevate the total ionic conductivity, and blending with Mph which can improve thermal stability may increase the temperature of decomposition. We measure the ion conductivity by Electrochemical Impedance Spectroscopy measurement and fine the best conductivity approach up to 10-4S/cm by blending with 40% PWA. We measure the thermal stability by TG/DTA and find that the temperature of decomposition can approach up to 390℃ by blending with 40% Mph.
〔1〕 G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers - Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 190, p 109, (1985).
〔2〕 鄭煜騰、鄭耀宗,質子交換型燃料電池的製造技術,能源季刊,第二十七卷,第二期,p.118,1997
〔3〕 Acres G. J. K., Frost J. G., Hards G. A., Potter R. J., Ralph T. R., Thompsett D., Burstein G. T., and Hutchings G. J.,“Electrocatalysts for Fuel Cell”, Catalysis Today, Vol. 38, p. 393, (1997).
〔4〕 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷,第四期,p. 161, (1995).
〔5〕 Stonehart O., “Development of Alloy Electrocatalysts for Phosphoric Acid Fuel Cells(PAFC)”, J. Apl. Electrochem. , Vol. 22, p. 995, (1992).
〔6〕 Giner J. and Hunter C., “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, p.1124, (1969).
〔7〕 Apleby A. J. and Folkes F. R., “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, (1989).
〔8〕 F. M. Gray, in Solid Polymer Electrolytes, “Fundamentals and Technological Applications”, VCH Publishers Inc., N. Y, (1991).
〔9〕 B. Scrosati, Applications of Electroactive Polymers, Chapman & Hall, London, UK, (1993).
〔10〕 F. M. Gray, in Solid Polymer Electrolytes, RSC materials monographs, The Royal Society of Chemistry, Cambridge, UK, (1997).
〔11〕 D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 14, 589, (1973).
〔12〕 Wright, P. V., Br. Polymer.J., 7, 319, (1975).
〔13〕 M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting on Solid Electroytes, Extended Abstract, St. Andrews, Scotland, September 20-22, (1978).
〔14〕 M. B. Armand, J. M. Chabagno, and M. Duclot,“Poly-ethers as solid electrolytes”, in Fast Ion Transport in solid, P. Vashista, J. N. Mundy, and G. k. Shenoy, Editors, p.131-136, Elsevier, North-Holland, Amsterdam, Netherlands, (1979).
〔15〕 C. Berthier, W. Gorecki, Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud,“Microscopic investigation of ionic conductivity in alkali-metal salts poly(ethylene oxide) adducts”, Solid State Ionic, Vol.11,p.91, (1983).
〔16〕 Z. Xiaoqing, S. Masahiko and T. Akinobu, Polymer, Vol.35, p.4280-4286, (1994).
〔17〕 Z. Xiaoqing, S.David H., Macromolecules, Vol.27,p.4919-4926, (1994).
〔18〕 K.Erdmann, W. Czerwinski, B. C. Gerstein, and M. Pruski, Journal of Polymer Science, Part B: Polymer physics, Vol.32, p.1961-1968, (1994).
〔19〕 J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK, (1987).
〔20〕 J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK, (1989).
〔21〕 O. Bohnke, C. Rousselot, P. A. Gillet, and C. Truche, “Gel electrolyte for solid-tate electrochromic cell”, J. Electrochem. Soc., 139, 1862-1865(1992).
〔22〕 O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, “Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration”, Solid State Ionics, 66, 97-104(1993).
〔23〕 O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, “Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of polymer concentration”, Solid State Ionics, 66, 105-112(1993).
〔24〕 X. Liu and T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 3066-3071(1997).
〔25〕 S. Slane and M. Salomon, “Composite gel electrolyte for rechargeable lithium batteries”, J. Power Sources, 55, 7-10(1995)
〔26〕 Z. Wang, B. Huang, S. Wang R. Xue, X. Huang, and L. Chen,”competition between the plasticizer and polymer on associating with Li+ ions in polyacry-lonitrile based electrolytes”, Solid State Ionics, 144, 778-786(1997).
〔27〕 K. M. Abraham, H. S. Choe, and D. M. Pasquariello, “Polyacrylonitrile electrolyte-based Liion batteries”,Electrochim. Acta, 43, 2399-2412(1998).
〔28〕 V. Arcella, A. Sanguineti, E. Quartarone, and P. Mustarelli, “Vinylidene-fluoride-hexafluoropropylene copolymers as hybrid electrolyte components for lithium batteries”, J.Power Sources, 81,-82, 790-794(1990).
〔29〕 F. Boudin, X. Andrieu, C.Jehoulet, and I.I. Olsen,”Microporous PVdF gel for lithium-ion batteries”, J.Power Sources, 81-82, 804-807(1999).
〔30〕 C. Capiglia, Y. Saito,H. Yamamoto, H. Kageyama, and P. Mustarelli, “Transport properties and microstructure of gel polymer electrolytes”, Electrochim. Acta, 45, 1341-1345(2000).
〔31〕 Y. Saito, C. Capiglia, H. Yamamoto, and P. Mustarelli, “Ionic conduction mechanisms of poly(vinylidenefluorice-hexafluoropropylene) type polymer electrolytes with LiN(CF3SO2)2”, J. Electrochem. Soc., 147, 1645-1650(2000).
〔32〕 F. Croce, G. B. Appetecchi, L. Persi& B. Scrosati. “Nanocomposite polymer electrolytes for lithiumbatteries”, NATURE, 394, 456(1998)
〔33〕 F. Croce, R. Curine, A. Matrinelli, L. Persi, F. Ronci, and B. Scrosati*, “Physical and Chemical Properties of Nanocomposite Polymer Electrolytes”, J.Phys. Chem. B,103, 10632(1999)
〔34〕 F. Croce, L. Persi, F. Ronci, B. Scrosati*”Nanocomposite polymer electrolytes and their impact on the lithium battery technology”,Solid State Ionics, 135, 47-52(2000)
〔35〕 F. Croce, L. Persi, B. Scrosati*, Journal of the Electrochemical cociety 147 1718-1721(2000)
〔36〕 F. Croce, L. Persi, B. Scrosati*, Jorunal of Power Sources 97-98(2001)644-648
〔37〕 Capiglia, P. Mustarelli*, E. Quartarone, C. Tomasi, A. Magistris, Solid State Ionics 118(1999)73-79
〔38〕 F. Croce a, L. Persi a, B. Scrosati a,* ,1 ,F. Serraino-Fiory a ,E. Plichtab ,M.A.Hendricksonb,Electrochimica Acta 46(2001)2457-2461
〔39〕 M. Doyle, T. F. Fuller, and J. Newman, “The importance of the lithium ion transference number in lithium/polymer cells”, Electrochim. Acta, 39,2073-2081(1994).
〔40〕 J. J. Ebelmen, Amm., Vol. 57, p. 331, (1846).
〔41〕 T. Graham, Journal of Chemistry Society, Vol. 17, p. 318-327, (1864).
〔42〕 L. Royleigh, Philos. Mag.,38,738, (1919).
〔43〕 W. Geffcken and E. Berger, German Patent, 736411, (1939).
〔44〕 M. Vandenoever, T. Peijs, “Continuous-Glass-Fiber- Reinforced Polypropylene Composites - II - Influence of Maleic-Anhydride Modified Polypropylene on Fatigue Behavior”, Composites Part A - Applied Science and Manufacturing, 29,. 3, p. 227-239, (1998).
〔45〕 C. B. Hurd, “Theories for the Mechanism of the Setting of Silicic Acid Gels”, Chemistry Review, Vol. 22, p. 403-422, (1938).
〔46〕 R. Roy, J. Am. Ceram. Soc., 52,334 (1969).
〔47〕 R. K. Iler, The Chemistry of Silica, Wiley-Inter Science, (1955)
〔48〕 L. Levene and I. M. Thomas, U. S. Patent 3,640,093, (1972).
〔49〕 H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie, 10, 6, p. 363-370, (1971).
〔50〕 B. E. Yoldas, “Alumina Gels that Form Porous Transparent Al2O3”, Journal of Materials Science, Vol. 10, pp. 1856-1860, (1975).
〔51〕 B. E. Yoldas, “Preparation of Glasses and Ceramics from Metal-organic Compounds”, J. Mater. Sci., Vol. 12, p. 1203-1208, (1977).
〔52〕 G. Yi, M. Sayer, “Gol-Gel Processing of Complex Oxide Films”, Ceramic Bulletin, 70,. 7, p. 1173-1179, (1991).
〔53〕 C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, (1990).
〔54〕 E. J. A. Pope and J. D. Mackenzie, “Sol-Gel Processing of Silica, II. The Role of the Catalyst”, Journal of Non-Crystalline Solids, Vol. 87, p. 185-198, (1986).
〔55〕 R. C. Mehrota, R. Bohra, D. P. Gaur, “Metal □-Diketonates and Allied Derivatives”, Academic, London, (1978).
〔56〕 H. Schmidt, B. Seiferling, Mater. Res. Soc. Symp. Proc., Vol. 73, p. 739, (1986).
〔57〕 C. S. Parkhurst, L. A. Doyle, L. A. Silverman, S. Singh, M. P. Anderson, D. McClurg, G. E. Wnek and D. R. Uhlmann, Mater. Res. Soc. Symp. Proc., Vol. 73, p. 769, (1986).