簡易檢索 / 詳目顯示

研究生: 陳建州
Chien-Chou Chen
論文名稱: 微型生化燃料電池之製造與特性分析
Fabrication and Characterization of Miniaturized Microbial Fuel Cells
指導教授: 蘇育全
Yu-Chuan Su
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 87
中文關鍵詞: 微生物燃料電池表面張力酵母菌
外文關鍵詞: Microbial fuel cell, surface tension, yeast
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標是要發展攜帶式微生物燃料電池,以自發的氣泡導引機制排放二氧化碳並產生流動以輔助電子的傳遞,使系統在能量轉換效率與操作壽命上都能有大幅度的提升。微生物燃料電池的陽極以酵母菌為觸媒催化葡萄糖的反應,並利用傳遞媒介將電子輸送到電極表面;陰極則使用鐵氰化鉀-亞鐵氰化鉀循環與氧氣、質子及電子反應,形成完整的反應迴路。反應過程中陽極會持續產生二氧化碳,氣泡若聚集在陽極內將逐漸使電池失效。本研究以氣泡壓力配合表面張力和浮力的作用,設計並利用微加工技術製造出具有自發性氣泡導引功能的陽極槽,再透過封裝建構出密閉可攜帶的微生物燃料電池。氣泡的排放會同時產生擾動以加快電子傳遞的速度,在能量的輸出上,單電池開路電壓可達0.37V,60分鐘內平均體積能量輸出可達32.16μW/cm3,操作壽命最長可達4小時,過程中電流輸出從120μA/cm2衰退至10μA/cm2。除此之外,本研究並成功的製作出由六個單元組合而成的電池堆,總驅動電壓為1.75V,且具備驅動發光二極體的能力。


    We have successfully demonstrated a portable microbial fuel cell that is capable of autonomously discharging CO2 bubbles and agitating aqueous anolyte to prolong its operation lifetime and facilitate the electron transport inside. This fuel cell consumes glucose and oxygen to generate electricity in a reaction catalyzed by encapsulated microorganisms. The bio-catalysts, fuels, and liquid electrolytes are sealed inside two liquid-impermeable compartments separated by a proton exchange membrane. In order to discharge generated CO2 gas, this fuel cell is equipped with a bubble guiding and venting system, which releases the pressure built inside the anode compartment and agitates the anolyte as well. In the prototype demonstration, an open-circuit potential of 0.37 V per single unit and an average power output of 32.16 μW/cm3 in the first hour is achieved. With 40 milligrams of glucose fuels, the prototype cell can continuously operate for more than 4 hours. Furthermore, a fuel-cell stack of 6 units, which has an overall potential over 1.5V, were built and successfully power a light emitting diode. As such, this fuel cell is capable of self-regulating the electricity harvesting process and producing steady voltage and current outputs for portable applications.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 微生物燃料電池與直接甲醇燃料電池的比較 2 1.3 文獻回顧 4 1.3.1 提高效能相關研究 4 1.3.2 應用相關研究 5 1.3.3 微生物燃料電池的效能比較 8 1.3.4 排氣相關研究 9 1.4 研究動機 10 第2章 工作原理 12 2.1 微生物燃料電池運作機制 12 2.1.1 微生物的新陳代謝 14 2.1.2 電子傳輸機制 17 2.2 影響微生物燃料電池效能之變數 20 2.2.1 微生物生理影響 21 2.2.2 電子傳遞介質 21 2.2.3 氧化還原電位 24 2.2.4 燃料電池的電位損失[15] 25 2.3 表面張力相關理論基礎[24][25] 26 2.3.1 表面張力 26 2.3.2 接觸角 27 2.3.3 Young Laplace Equation 28 第3章 MFC設計與製作 30 3.1 實驗試劑及材料 30 3.1.1 陽極電解液 32 3.1.2 陰極電解液 33 3.1.3 質子交換膜 33 3.1.4 疏水透氣膜 34 3.2 電池設計與製程 35 3.2.1 參考電池設計概念 35 3.2.2 微型生化燃料電池設計概念 36 3.2.3 微型MFC氣泡擾動及排放設計 39 3.2.4 電極板的製作 45 3.2.5 MFC電池堆設計與製作 46 3.3 實驗步驟與設置 47 3.3.1 電解液配製 47 3.3.2 電池排氣量測 49 3.3.3 電池效能量測及相關計算 50 第4章 實驗結果與討論 52 4.1 電子傳遞介質的選擇 52 4.2 陽極槽尺度對電池效能的影響 55 4.3 二氧化碳的產量 56 4.4 微生物燃料電池排氣實驗 57 4.5 氧氣對陽極的影響 60 4.6 氣泡生成對電池效能的影響 61 4.7 電極種類對電池效能的影響 62 4.7.1 碳布電極 63 4.7.2 石墨電極 64 4.8 MFC適化模型的建立 67 4.8.1 不同微生物濃度對電池效能的影響 68 4.8.2 不同電子傳遞介質濃度對電池效能的影響 68 4.8.3 由酵素動力學建立MFC模型 69 4.9 電極排氣實驗結果 73 4.10 初步適化結果 74 4.11 電極排氣率對電池效能的影響 76 4.12 庫侖效率 81 4.13 MFC的應用-驅動發光二極體 81 第5章 結論 84 參考文獻 85

    [1]. K. Rabaey and W. Verstraete, “Microbial Fuel Cells: Novel Biotechnology for Energy Generation,” Trends in Biotechnology, Vol. 23, pp. 291-298, 2005.
    [2]. E. Katz, A. N. Shipway and I. Willner, “Chapter 21: Biochemical fuel cells,” Handbook of Fuel Cells, Wiely, 2003.
    [3]. S. M. Haile, “Fuel Cell Materials and Components,” Acta Materialia, 2003.
    [4]. S. D. Roller, H. P. Bennetto, G. M. Delancy, J. R. Mason, J. L. Stirling and C. F. Thurston, “Electron-transfer Coupling in Microbial Fuel Cells: 1.Comparison of Redox-mediator Reduction Rates and Respiratory Rates of Bacteria,” Journal of Chemical Technology and Biotechnology Letters, Vol. 34B, pp. 3-12, 1984.
    [5]. G. M. Delancy, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling and C. F. Thurston, “Electron-transfer Coupling in Microbial Fuel Cells: 2.Performance of Fuel Cells Containing Selected Microorganism-Mediator-Substrate Combinations,” J. of Chemical Technology and Biotechnology Letters, Vol. 34B pp. 13-27, 1984.
    [6]. D. H. Park and J. G. Zeikus, “Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore,” Applied and Environmental Microbiology, Vol. 66, pp. 1292-1297, 2000.
    [7]. U. Schroder, J. Nieben, and F. Scholz, “A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude,” Angew. Chem. Int. Ed., Vol. 42, pp. 2880-2883, 2003.
    [8]. M. Chiao, K. B. Lam and L. Lin, “Micromachined Microbial and Photosynthetic Fuel Cells,” Journal of micromechanics and microengineering, Vol.16, pp. 2547-2553, 2006.
    [9]. A. L. Walker, C. W. Walker Jr, “Biological fuel cell and an application as a reserve power source,” Journal of Power Sources, Vol. 160, pp.123-129, 2006.
    [10]. H. Liu, R. Ramnarayanan, and B. E. Logan, “Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell,” Environmental Science & Technology, Vol. 38, pp. 2281-2285, 2004.
    [11]. H. Liu and B. E. Logan, “Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane,” Environmental Science & Technology, Vol. 38, pp. 4040-46, 2004.
    [12]. B. Lafelice, V. Ferrarini, R. Guerrieri, “A Parallel Electronic Sensor for Phenotypic Screening in Energy Production,” Proceedings of IEEE Sensors, pp. 68-71, 2004.
    [13]. F. V. Stetten, S. Kerzenmacher, A. Lorenz, V. Chokkalingam, N. Miyakawa, R. Zengerle and J. Ducree, “A One-Compartment, Direct Glucose Fuel Cell For Powering Long-Term Medical Implants,” Micro Electro Mechanical Systems, pp.934-937, 2006.
    [14]. D. D. Meng, J. Kim and C. J. Kim, “A Degassing Plate with Hydrophobic Bubble Capture and Distributed Venting for Microfluidic Devices,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 419-424, 2006.
    [15]. K. Rabaey, G. Lissens and W. Verstraete, “Microbial Fuel Cells: Performances and Perspectives,” Microbial Fuel Cells, pp.1-30, 2005.
    [16]. 鄔美雲, “應用分子技術於葡萄酒酵母菌之鑑定與分型,” 國立中興大學食品科學系碩士論文, 2004.
    [17]. http://bbs.zzcah.edu.cn/pic/kl/5.ppt
    [18]. http://www.med.tcu.edu.tw/med89/content/chapter19.pdf
    [19]. 李銘亮, 微生物生理學, 藝軒圖書出版社, 2002.
    [20]. A. K. Shukla, P. Suresh, S.Berchmans and A. Rajendran, “Biological Fuel cells and Their Applications,” Current Science, Vol. 87, pp. 455-468, 2004.
    [21]. D. R. Lovley, “B. Juice: Harvesting Electricity with Microorganisms,” Nature Reviews Microbiology, Vol. 4, pp. 497-508, 2006.
    [22]. E. I. Suez and R. M. Corn, “In Situ Polarization Modulation-Fourier Transform Infrared Spectroelectrochemistry of Phenazine and Phenothiazine Dye Films at Polycrystalline Gold Electrodes,” Electrochimica Acta, Vol. 38, pp. 1619-25, 1993.
    [23]. http://icho.chem.ntnu.edu.tw/pub/name/a-name.html
    [24]. 陳浩平, “微流體晶片之表面張力與微流道幾何尺寸關係分析模擬,” 南台科技大學機械工程系碩士論文, 2003.
    [25]. P. C. Hiemenz and R. Rajagopalan, “Principles of Colloid and Surface Chemistry,” Third Edition, Revised and Expanded.
    [26]. http://www.21ft.com/ftpsite/software/academic/Works/M_Yeast.pdf
    [27]. http://www.cebiz.cn/trade/info/541887.htm
    [28]. “質子交換膜燃料電池之電解質,” 化工, 第49卷, 第3期, pp.51-66, 2002.
    [29]. H. P. Bennetto, “Electricity Generation by Microorganisms,” Biotechnology Education, Vol. 1, pp. 163-168, 1990.
    [30]. H. Liu, S. Grot and B. E. Logan, “Electrochemically Assisted Microbial Production of Hydrogen from Acetate,” Environmental Science & Technology, Vol. 39, pp. 4317-4320, 2005.
    [31]. X. C. Zhang and A. Halme, “Modeling of a Microbial Fuel Cell Process,” Biotechnology Letters, Vol. 17, pp.809-814, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE