簡易檢索 / 詳目顯示

研究生: 魏俊卿
Chun-Chin Wei
論文名稱: 利用模糊理論選擇適合的企業資訊系統-以企業資源規劃系統與供應鏈管理系統為例
Enterprise Information System Selection Using Fuzzy Set Theory - An Analysis in ERP and SCM Systems
指導教授: 王茂駿
Mao-Jiun J. Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 116
中文關鍵詞: 企業資訊系統企業資源規劃供應鏈管理模糊理論決策分析
外文關鍵詞: Enterprise Information System, Enterprise Resource Planning, Supply Chain Management, Fuzzy set theory, decision-making
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 資訊時代已經大幅度地改變企業的環境,迫使企業必須支出龐大的金錢、人力和時間於大型企業資訊系統(Enterprise Information System; EIS),如:企業資源規劃系統(Enterprise Resource Planning; ERP)、供應鏈管理系統(Supply Chain Management; SCM) 等的導入以期提昇企業的競爭力。導入此類的企業資訊系統將會廣泛且深遠地影響未來企業績效的良窳。因此在企業資訊系統導入之初,選擇適當的企業資訊系統將是此類專案成功最重要的第一步。
    本論文提出兩個全面性的企業資訊系統選擇架構,包括:ERP系統的選擇架構和SCM系統的選擇架構。其中,在ERP系統的選擇架構中,首先依據產業特性、內外環境和公司策略建立導入ERP系統的策略性目標,並由此發展基本目標階層架構(Fundamental-objective hierarchy)和工具性目標網路架構(Means-objective network),以確立ERP導入專案之目標架構。根據此目標架構萃取出適當的評估準則和評估法則。評估過程中,結合包括外部專業顧問公司對市場上的ERP系統的客觀評估資料和內部專案小組訪談ERP供應商所得到的主觀評估資料兩部分的資料加以彙總分析。由於人類較習慣使用語意方式表達評估結果,因此利用模糊理論(Fuzzy set theory)來將決策者的語意評估值與給定的權重值加以處理,並進行排序。最後經由計算結果得到最適當的ERP系統。本方法以一個新竹科學園區的電子廠選擇ERP系統的個案加以說明與應用。
    在SCM系統選擇架構中,公司先分析產業供應鏈的特性以建立適當的供應鏈模式,發展符合公司供應鏈的策略性目標。再依據此策略性目標發展所需要導入供應鏈管理系統的目標架構。決策者依據此目標架構、和SCM供應商訪談初步選擇供應商,再由這些供應商進行系統雛形的建立。經過這些互動後,決策者依據所收集的資料進行語意評估。模糊理論方法再度利用於處理評估資料的計算,並求取最適當的SCM系統。本SCM系統選擇架構以一個鋼鐵廠的個案為例進行說明與應用。
    本論文發展出ERP系統與SCM系統評選的架構。依據此二架構,企業可以依據其本身的情況與特性發展適當的評選目標與準則,以符合企業未來發展的目標和策略。由這些目標的架構可以發展詳細的準則標準和知識,使每位決策者遵循一致的評估法則。而模糊多準則方法提供了決策者以量化和語意方式進行評估的彈性。企業可以系統化地依序操作,以簡化複雜的評選作業,容易取得一致的共識。


    The information era has dramatically changed the business environment. Implementing the Enterprise Information Systems (EIS) is an important investment that can significantly affect future competitiveness and performance of a company. This study presents two comprehensive frameworks for selecting an adequate Enterprise Resource Planning (ERP) system and an appropriate Supply Chain Management (SCM) system.
    The proposed ERP selection framework combines objective data obtained from external professional reports and subjective data acquired from internal interviews with vendors using the fuzzy set theory to aggregate the linguistic evaluation descriptions and weights of multiple decision makers. Additionally, the framework can systematically construct the objectives of the ERP implementation project to sustain the goals and strategies of the company, identify the appropriate attributes, and set up consistent evaluation standards for facilitating group decision process. A hierarchical attribute structure is proposed to evaluate ERP systems extracted from the objective structure systematically. Then, an actual example in Taiwan demonstrates the feasibility of applying the proposed ERP selection framework.
    Additionally, this study presents a comprehensive framework to select an adequate SCM system that incorporates the strategies and operating routines of a company’s supply chain. Fuzzy set theory is also adopted to resolve the ambiguities involved in the assessing SCM alternatives and aggregating the linguistic evaluations and weights. The proposed framework can facilitate the complex SCM system selection process, identify the supply chain elements, construct the supply chain model, and consolidate efforts to assess group decision-making process. Furthermore, an illustrative example in Taiwan demonstrates the effectiveness of applying the proposed selection framework.

    Table of Content Abstract…………………………………………………………………………………Ⅰ 摘要…………………………………………………………………………………….Ⅲ 誌謝…………………………………………………………………………………….Ⅴ Table of Content………………………………………………………………………..Ⅵ Figure List………………………………………………………………………………Ⅸ Table List……………………………………………………………………………….Ⅹ Chapter 1 Introduction…………………………………………………………………1 1.1 Motivation………………………………………………………………………...1 1.2 Problem statement………………………………………………………………...3 1.3 Dissertation organization………………………………………………………….4 Chapter 2 Literature Review…………………………………………………………..7 2.1 EIS selection characteristics………………………………………………………7 2.1.1 Introduction of ERP and SCM systems……………………………………..7 2.1.2 EIS selection issues………………………………………………………...11 2.2 Selection methods………………………………………………………………..13 2.2.1 Quantitative selection methods…………………………………………….14 2.2.2 Qualitative analysis………………………………………………………..16 2.3 Fuzzy set applications in EIS selection………………………………………….19 Chapter 3 A Comprehensive ERP Selection Framework……………………………….22 3.1 Procedure for selecting a suitable ERP system…………………………………..22 3.1.1 Form a project team and collect relative information……………………..24 3.1.2 Identify the characteristics of an ERP implementation project……………24 3.1.3 Construct the structure of objectives………………………………………26 3.1.4 Extract the attributes……………………………………………………….27 3.1.5 Screen the unqualified ERP systems and hold interview meetings………..32 3.1.6 Aggregate external professional data………………………………………33 3.1.7 Aggregate interviews data…………………………………………………36 3.1.8 Combine objective and subjective suitablitities…………………………...37 3.1.9 Ranking method……………………………………………………………37 3.1.10 Select the ERP system with the maximum ranking value………………..39 3.2 An actual example……………………………………………………………….39 3.3 Discussions………………………………………………………………………54 3.4 Advantages of the proposed framework…………………………………………56 Chapter 4 SCM System Selection Framework……………………………………….61 4.1 Background………………………………………………………………………61 4.2 The SCM system vs. ERP system………………………………………………..62 4.3 Procedure for selecting an adequate SCM system……………………………….64 4.3.1 Form a project team and identify the characteristics of supply chain……..65 4.3.2 Develop the strategic objectives and the network of the supply chain…….67 4.3.3 Establish the structure of objectives……………………………………….68 4.3.4 Establish the proper attribute hierarchy……………………………………69 4.3.5 Eliminate unqualified alternatives…………………………………………74 4.3.6 Hold interview meetings and probe the prototypes………………………..74 4.3.7 Assign ratings to the SCM alternatives…………………………………….75 4.3.8 Aggregate the assessments and calculate the fuzzy SCM suitability index.75 4.3.9 Rank the final fuzzy SCM suitability……………………………………...77 4.3.10 Select the appropriate SCM system………………………………………78 4.4 Illustrative example……………………………………………………………...78 4.5 Advantages of the proposed framework…………………………………………89 Chapter 5 Discussion…………………………………………………………………91 5.1 Optimism index θ setting in the fuzzy total integral ranking method……...…91 5.2 Rank reversal…………………………………………………………………….95 5.3 Strategic EIS selection process…………………………………………………..96 5.4 Differences between the ERP and SCM selection frameworks………………….98 5.4.1 Strategic fitness…………………………………………………………….99 5.4.2 Basic conceptions………………………………………………………….99 5.4.3 Attribute choosing………………………………………………………..100 5.5 Other discussions……………………………………………………………….103 Chapter 6 Conclusion……………………………………………………………….105 References…………………………………………………………………………….108 Figure List Figure 1.1 Organization of this dissertation……………………………………………..6 Figure 2.1 ERP system modules…………………………………………………………8 Figure 2.2 SCM system modules……………………………………………………….10 Figure 2.3 General FMADM procedures………………………………………………21 Figure 3.1 Comprehensive ERP system selection framework…………………………25 Figure 3.2 ERP evaluation fundamental-objective hierarchy………………………….35 Figure 3.3 Means-objective network (project and system factors)…………………….44 Figure 3.4 Means-objective network (vendor factors)…………………………………45 Figure 3.5 Total integral value change with 0≦λ≦1 (θ=0.5)………………………53 Figure 4.1 Comprehensive SCM system selection procedure………………………….66 Figure 4.2 SCM system evaluation attribute hierarchy………………………………...82 Figure 4.3 Means-objective network (strategy and project factors)……………………83 Figure 4.4 Means-objective network (system factor)…………………………………..84 Figure 4.5 Means-objective network (vendor factor)…………………………………..85 Table List Table 2.1 Quantitative EIS or IT system selection methods and their general characteristics………………………………………………………………...17 Table 3.1 Linguistic variables describing weight of each attribute…………………….32 Table 3.2 Linguistic values of rating…………………………………………………...32 Table 3.3 Weights of main attributes and sub-attributes given by decision makers……46 Table 3.4 Attribute details………………………………………………………………47 Table 3.5 Examples of screening questions…………………………………………….49 Table 3.6 Quantitative attribute values for each ERP system…………………………..50 Table 3.7 Decision makers’ evaluation of system P1 under main attributes…………....50 Table 3.8 Decision makers’ evaluation of system P1 under sub-attributes……………..52 Table 3.9 Evaluation results (λ=0.5, θ=0.5)………………………………………...52 Table 3.10 Performance measures of ERP system and their correlative selection attributes……………………………………………………………………..59 Table 4.1 Linguistic variables describing weights of attributes and values of ratings…74 Table 4.2 Examples of screening questions…………………………………………….86 Table 4.3 Weights of main attributes given by decision makers……………………….87 Table 4.4 Decision makers’ evaluation of SCM system P1 under main attributes……..88 Table 5.1 New evaluation results of the SCM system selection example with newθ=0.5871………………………………………………………………………93 Table 5.2 New evaluation results of the SCM system selection example with newθ=0.4187………………………………………………………………………95

    References
    1. Al-Mashari, M., Zairi, M., 2000. Supply-chain re-engineering using enterprise resource planning (ERP) systems: an analysis of a SAP R/3 implementation case. International Journal of Physical Distribution & Logistics 30 (3/4), 296-313.
    2. Ash, C.G., Burn, J.M., 2003. A strategic framework for the management of ERP enabled e-business change. European Journal of Operational Research 146, 374-387.
    3. Ayers, J.B., 2000. Handbook of supply chain management. CRC Press LCC, Boca Raton.
    4. Badri, M.A., Davis, D., Davis D., 2001. A comprehensive 0-1 goal programming model for project selection. International Journal of Project Management 19, 243-252.
    5. Bakos, Y., 1998. The emerging role of electronic marketplaces on the Internet. Communications of the ACM 41 (8), 35-42.
    6. Beach, R., Muhlemann, A.P., Price, D.H.R., Paterson, A., Sharp, J.A., 2000. The selection of information systems for production management: An evolving problem. International Journal of Production Economics 64, 319-329.
    7. Beamon, B.M., 1998. Supply chain design and analysis: Models and methods. International Journal Production Economics 55, 281-294.
    8. Boone, T., Ganeshan, R., 2002. New directions in supply-chain and technology management: technology, strategy, and implementation. AMACOM, New York.
    9. Buckley, J.J., 1985. Ranking alternatives using fuzzy numbers. Fuzzy Sets and Systems 15, 21-31.
    10. Buckley, J.J., 1985. Fuzzy hierarchical analysis. Fuzzy Sets and Systems 17, 233-247.
    11. Buss, M.D.J., 1983. How to rank computer projects. Harvard Business Review 61 (1), 118-125.
    12. Chandler, J.S., 1982. A multiple criteria approach for evaluating information systems. MIS Quarterly 6 (1), 61-74.
    13. Chang, P.L., Chen, Y.C., 1994. A fuzzy multi-criteria decision making method for technology transfer strategy selection in biotechnology. Fuzzy Sets and Systems 63, 131-139.
    14. Chen, I.J., 2001. Planning for ERP systems: Analysis and future trend. Business Process Management Journal 7 (5), 374-386.
    15. Chen, K., Gorla, N., 1998. Information system project selection using fuzzy logic. IEEE transactions on systems, man, and cybernetics — part A: systems and humans 28, 849-855.
    16. Chen, S.J., Hwang, C.L., 1992. Fuzzy multiple attribute decision making. Springer-Verlag, New York.
    17. Chen, S.H., 1985. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems 17, 113-129.
    18. Chen, S.M., 2001. Fuzzy group decision making for evaluating the rate of aggregative risk in software development. Fuzzy Sets and Systems 118, 75-88.
    19. Chen, S.M., Lee, C.H., 1999. New methods for students' evaluation using fuzzy sets. Fuzzy Sets and Systems 104, 209-218.
    20. Cheng, C.H., 1998. A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems 95, 307-317.
    21. Cheng, C.H., 1999. Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems 107, 25-35.
    22. Christopher, M., Juttner, U., 2000. Developing strategic partnerships in the supply chain a practitioner perspective. European Journal of Purchasing & Supply Management 6, 117-127.
    23. Christoper, M., 1992. Logistics and Supply Chain Management: Strategies for Reducing Costs and Improving Services. Pitman, London.
    24. Chopra, S., Meindl, P., 2001. Supply chain management: strategy, planning, and operation. Prentice-Hall, Upper Saddle River.
    25. Clemen, R.T., 1996. Making hard decisions: an introduction to decision analysis. Duxbury Press, Pacific Grove.
    26. Cooper, M.C., Lambert, D.M., Pagh, J.D., 1997. Supply chain management: More than a new name for logistics, The International Journal of Logistics Management 8 (1), 1-13.
    27. Davenport, T.H., 1998. Putting the enterprise into the enterprise system. Harvard Business Review, July-August, 121-131.
    28. DeLone, W.H., McLean, E.R., 1992. Information systems success: the quest for the dependent variable. Information Systems Research 3, 60-95.
    29. Devedzic, G.B., Pap, E., 1999. Multicriteria-multistages linguistic evaluation and ranking of machine tools. Fuzzy Sets and Systems 102, 451-461.
    30. Dyer, J.S., Forman, E.H., 1992. Group decision support with the analytic hierarchy process. Decision Support Systems 8, 99-124.
    31. Farbey, B., Land, F. and Targett, D. 1992, Evaluating investments in IT. Journal of Information Technology 7 (2), 109-122.
    32. Fisher, ML., 1997. What is the right supply chain for your product? Harvard Business Review March-April, 83-93.
    33. Hagood, W.O., Friedman, L., 2002. Public Personnel Management 31 (4), 543-557.
    34. Handfield, R.B., Ernest L.N., 1999. Introduction to supply chain management. Prentice-Hall, Upper Saddle River.
    35. Herrera, F., Herrera-Viedma, E., 2000. Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems 115, 67-82.
    36. Hicks, D.A, Stecke, K.E., 1995. The ERP maze: enterprise resource planning and other production and inventory control software. IIE Solutions 27 (8), 12-16.
    37. Ishikawa, A., Amagasa, M., Shiga, T., tomizawa, G., Tatsuta, R., Mieno, H., 1993. The Max-Min Delphi method and fuzzy Delphi method via fuzzy integration, Fuzzy Sets and Systems 55, 241-253.
    38. Jiang, J.J., Klein, G., 1999. Project selection criteria by strategic orientation. Information & Management 36, 63-75.
    39. Jiang, J.J., Klein, G., 1999. Information system project-selection criteria variation within strategic classes. IEEE Transactions on Engineering Management 46 (2), 171-176.
    40. Kaufmann, A., Gupta, M.M., 1991. Introduction to Fuzzy Arithmetic: Theory and Application. Van Nostrand Reinhold, New York.
    41. Keeney, R.L., Raiffa, H., 1993. Decisions with multiple objectives: preferences and value tradeoffs. Cambridge University Press, New York.
    42. Kumar, V., Maheshwari, B., Kumar, U., 2002. Enterprise resource planning systems adoption process: a survey of Canadian organizations. International Journal of Production Research 40, 509-523.
    43. Lai, V.S., Robert, T.P., Wong, B.K., 1999. Software selection: a case study of the application of the analytical hierarchical process to the selection of a multimedia authoring system. Information Management 36, 221-232.
    44. Lai, V.S., Wong, B.K. Cheung, W., 2002. Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research 137, 134-144.
    45. Lambert, D.M., Cooper, M.C., 2000. Issues in supply chain management, Industrial Marketing Management 29, 65-83.
    46. Lee, D.H., Park, D., 1997. An efficient algorithm for fuzzy weighted average. Fuzzy Sets and Systems 87, 39-45.
    47. Lee, E.S., Li, R.J., 1988. Comparison of fuzzy numbers based on the probability measure of fuzzy events. Computers and Mathematics with Applications 15, 887-896.
    48. Lee, H.M., 1996a. Applying fuzzy set theory to evaluate rate of aggregative risk in software development. Fuzzy Sets and Systems 79, 323-336.
    49. Lee, H.M., 1996b. Group decision making using fuzzy set theory for evaluating the rate of aggregative risk in software development. Fuzzy Sets and Systems 80, 261-271.
    50. Lee, J.W., Kim, S.H., 2000. Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research 27,367-382.
    51. Lee, J.W., Kim, S.H., 2001. An integrated approach for interdependent information system project selection. International Journal of Project Management 19,111-118.
    52. Lee-Kwang, H., Lee, J. H., 1999. A method for ranking fuzzy numbers and its application to decision-making. IEEE Transactions on Fuzzy Systems 7, 677-685.
    53. Liang, G.S., Wang, M.J., 1993. A fuzzy multi-criteria decision-making method for robot selection. Robotics & Computer-Integrated Manufacturing 10 (4), 267-274.
    54. Liang, G.S., Wang, M.J.J., 1994. Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research 78, 22-33.
    55. Liou, T.S., Wang, M.J., 1992. Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems 50, 247-255.
    56. Liou, T.S., Wang, M.J., 1992. Fuzzy weighted average: An improved algorithm. Fuzzy Sets and Systems 49, 307-315.
    57. Liou, T.S., Wang, M.J., 1994. Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research 78, 22-33.
    58. Lucas, H.C., Moore, J.R. Jr., 1976. A multiple-criterion scoring approach to information system project selection. Infor 14 (1), 1-12.
    59. Mandal, P., Gunasekaran, A., 2002. Application of SAP R/3 in on-line inventory control. International Journal of Production Economics 75, 47-55.
    60. Matarazzo, B., Munda, G.., 2001. New approaches for the comparison of L-R fuzzy numbers: a theoretical and operational analysis. Fuzzy Sets and Systems 118, 407-418.
    61. Miller, J., Doyle, B.A., 1987. Measuring the effectiveness of computer-based information systems in the financial service sector. MIS Quarterly, Mar. 107-124.
    62. Min, H., Zhou, G., 2002. Supply chain modeling: past, present and future. Computers & Industrial Engineering 43, p231-249.
    63. Motwani, J., Mirchandani, D., Madan, M., Gunasekaran, A., 2002. Successful implementation of ERP projects: Evidence from two case studies. International Journal of Production Economics 75, 83-96.
    64. Murillo, L., 2001. Supply chain management and the international dissemination of e-commerce. Industrial Management & Data Systems 101 (7), 370-377.
    65. Ngai, E.W.T., 2003. Selection of web sites for online advertising using the AHP. Information & Management 40, 233-242.
    66. Pandey, P.C. Kengpol, A., 1995. Selection of an automated inspection system using multiattribute decision analysis. International Journal of Production Economics 39 (3), 289-298.
    67. Ptak, C.A., 2000. ERP Tools, Techniques, and Applications for Integrating the Supply Chain. St. Lucie Press.
    68. Radding, A., 1999. ERP: more than an application. Information Week 5 April.
    69. Reimers, K., 2002. Implementing ERP systems in China. Proceedings of the 35th Hawaii International Conference on System Sciences, Hawaii.
    70. Saad, M., Jones, M., James, P., 2002. A review of the progress towards the adoption of supply chain management (SCM) relationships in construction. Europeans Journal of Purchasing & Supply Management 8, 173-183.
    71. Saarinen, T., 1996. An expanded instrument for evaluating information system success. Information & Management 31, 103-118.
    72. Saaty, T.L., 1980. The analytic hierarchy process. McGraw-Hill, New York.
    73. Sahay, B.S., Gupta, A.K., 2003. Development of software selection criteria for supply chain solutions. Industrial Management & Data Systems 103 (2), 97-110.
    74. Santhanam, R., Kyparisis, G.J., 1996. A decision model for interdependent information system project selection. European Journal of Operational Research 89, 380-399.
    75. Santhanam, R., Kyparisis, G.J., 1995. A multiple criteria decision model for information system project selection. Computers & Operations Research 22 (8), 807-818.
    76. Sarkis, J., Sundarraj, R.P., 2000. Factors for strategic evaluation of enterprise information technologies. International Journal of Physical Distribution & Logistics Management 30 (3/4), 196-220.
    77. Schniederjans, M.J., Wilson, R.L., 1991. Using the analytic hierarchy process and goal programming for information system project selection. Information & Management 20, 333-342.
    78. Semich, J.W., 1994. Here’s how to quantify IT investment benefits. Datamation 40 (1), 45-47.
    79. Simchi-Levi, D., Kaminsky P., Simchi-Levi E., 2000. Designing and managing the supply chain: concepts, strategies, and case studies. McGraw-Hill, Boston.
    80. Skok, W., Kophamel, A., Richardson, I., 2001. Diagnosing information systems success: importance-performance maps in the health club industry. Information & Management 38, 409-419.
    81. Sohal, A.S., Power, D.J., and Terziovski, M., 2002. Supply chain management in Australian manufacturing- two case studies. Computers & Industrial Engineering 43, 97-109.
    82. Talluri, S., 2000. An IT/IS acquisition and justification model for supply-chain management. International Journal of Physical Distribution & Logistics 30 (3/4), 221-237.
    83. Taylor, D.A., 2004. A master plan for software selection. Supply Chain Management Review 8 (1), 20-27.
    84. Teltumbde, A., 2000. A framework of evaluating ERP projects. International Journal of Production Research 28, 4507-4520.
    85. Wang, X., Kerre, E.E., 2001. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems 118, 375-385.
    86. Wang, X., Kerre, E.E., 2001. Reasonable properties for the ordering of fuzzy quantities (Ⅱ). Fuzzy Sets and Systems 119, 387-405.
    87. Wang, T.Y., Shaw, C.F., Chen, Y.L., 2000. Machine selection in flexible manufacturing cell: a fuzzy multiple attribute decision-making approach. International Journal of Production Research 38 (9), 2079-2097.
    88. Wang, M.J., Singh, H.P., Huang, W.V., 1991. A decision support system for robot selection. Decision Support Systems 7, 273-283.
    89. West, R., Shields, M., 1998. Strategic software selection. Strategic Finance, August, 3-7.
    90. Yager, R.R., Ovchinnikov S., Tong, R.M., Nguyen, H.T., Fuzzy sets and applications: Selected papers by L.A. Zadeh. John Wiley & Sons, Inc., New York.
    91. Yao, Y., He, H.C., 2000. Data warehousing and the internet’s impact on ERP. IT Pro March/ April, 37-41.
    92. Yuan, Y., 1991. Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 44, 139-157.
    93. Yusuf, Y., Gunasekaran, A., Abthorpe, M.S., 2004. Enterprise information systems project implementation: A case study of ERP in Rolls-Royce. International Journal of Production Economics 87, 251-266.
    94. Zimmermann, H.J., 1987. Fuzzy sets, decision making, and expert system. Kluwer Academic Publishers, Dordrecht.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE