研究生: |
郭良彥 |
---|---|
論文名稱: |
國小六年級學童速算能力之研究 A Research on Students` Ability in Rapid Calculation in the Sixth Grade |
指導教授: | 羅昭強 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 速算 、交換律 、結合律 、分配律 |
外文關鍵詞: | rapid calculation, commutative law, associative law, distributive law |
相關次數: | 點閱:38 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之研究目的在探討九年一貫課程實施下,我國國小六年級學童之速算能力。速算能力包含兩個層面,一是速算能力知識層面,二是速算能力應用層面。前者為運算規律之概念理解,後者為運算規律之應用計算。本研究採問卷調查法,並以電腦測驗做為研究工具。研究者自北部五縣市各選一所學校作為樣本學校,再從各樣本學校選取兩個班級做為本研究之研究樣本。
本研究主要發現如下:
1.雖然運算規律之概念理解為數學課程能力指標之一,然而僅有55.37%的學童能理解運算規律,並且僅有33.04%的學童能活用於計算過程中。
2.在結合律方面,學童分別在加減概念與乘除概念、整數計算與分數計算、左括計算與右括計算,這三方面的表現具有差異性。在分配律方面,學童分別在乘法概念與除法概念、正向概念與逆向概念、整數計算與分數計算、正向與逆向計算,這四方面的表現具有差異性。
3.在結合律概念與應用之關係,其符號改變概念與符號改變計算、符號改變計算與符號未改變計算具有相關性,而在分配律概念與應用方面,僅於正向概念與逆向概念具有相關性。
Abstract
The aim of this research is to discuss Taiwanese students’ ability of rapid calculation under the execution of the grade 1-9 curriculum. The ability of rapid calculation includes two aspects. One is about the knowledge of the ability of rapid calculation, and the other is about the application of it. The first one is the conceptual understanding of the operational properties. The second one is the calculation of the operational properties. This research is based on the “ Survey Research Methods,” and tests on computers is chosen as the tool.
The test was administered by 10 classes from five elementary schools in five counties from the norther Taiwan.
The main findings from the research are as following:
1.Although the conceptual understanding of the operational properties is one of the” Competence Indicators” in mathematics curriculum, only 55.37% of students can understand the operational properties and only 33.04% of students can actively use it in the process of the calculation.
2.From the associative law, there is difference among children in three aspects, which are the add and subtraction conception, the integral and fractional calculation and the computation of the left and right bracket. From the distributive law, children show difference in four aspects, which are the multiplication and division conception, the positive and reverse conception, the integral and fractional computation and positive and reverse computation.
3.In the relationship between between conception and application of associative law, there is relationship between symbol-changed conception and symbol-changed calculation, and between symbol-changed calculation and symbol-changeless calculation. But in the relationship between conception and application of distributive law, the only correlation is between positive and reverse conception.
中文部份
王薰蔚(民91)。64年版和82年版課程之學童數學計算能力之研究。國立新竹師範學院數理研究所碩士論文。
伍鴻熙(民91)。基本技巧與概念理解-數學教育中錯誤的二分法。載於永不停止的對話-談國小數學教育(5-26)。台北:教育部。
伍鴻熙(民91)。基本技巧vs.概念理解。載於教育部主編:永不停止的對話。台北:教育部。
何基誠(民90)。國小兒童解未知數解題程序的錯誤類型之研究。國立新竹師範學院數理研究所碩士論文。
施乃文(民93)。國小四年級學生計算流暢性教學實踐歷程之個案研究-以六名學生為例。國立嘉義大學國民教育研究所碩士論文。
教育部(民90)。九年一貫數學學習領域綱要修訂草案,臺北:教育部。
教育部(民92)。九年一貫數學學習領域課程網要,臺北:教育部。
許世壁(民92)。建構式數學,計算能力與九年一貫數學教育。國民教育,92.12,11~14。
周筱亭(民83)。數學新課程的趨勢。研習資訊,11(3),28~50。
湯錦雲(民90)。國小五年級學童分數概念與運算錯誤類型之研究。國立屏東師範學院數理研究所碩士論文。
黃敏晃(民83)。國民小學數學新課程之精神。載於國民小學數學科新課程概說,1~17。台灣省國民學校教師研習會編印。
黃芳玉(民91)。國小六年級學生數學表徵能力與計算能力之研究。國立嘉義大學數學教育研究所碩士論文。
張鐵聲(民86)。數學表達式和演算的認知意義。哲學雜誌,22,194-202。
甯自強(1995a)。五個區分對數與計算教材設計的影響。發表於八十三學年度國民小學新課程數學科研討會。臺北:臺灣省國民學校教師研習會。
蔡宗程(民92)。數學符號知識及運算概念與學生學習化學反應式之研究。國立臺灣師範大學科學教育研究所碩士論文。
張欽斐(民91)。從經驗知識延伸到形式知識內在關連-以分配律為例。國立彰化師範大學科學教育研究所碩士論文。
張碧芳(民93)。我國國小學童長度間接比較概念認知之研究。國立新竹教育大學數理教育碩士班論文。
謝堅(民86)。實驗課程對四則運算教材的處理。載於台灣省國民學校教師研習會編印,國民小學數學科新課程概說(中年級),78-94。
謝如山(民89)。括號學習的理論模式。藝術學報,66,149~166。
謝如山(民)。潛在分類模式在括號概念的應用。教育與心理研究,26,278~303。
謝如山(民89)。數的概念看九年一貫新課程教學設計。學校行政,7,48~55。
謝如山(民92)。建構理念教學在括號概念相關法則的應用。國北師學報,16(2),
謝宜玲(民91)。在課堂討論情境下國一學生文字符號概念及運算相關法則的認知。國立高雄師範大學數學系碩士論文。
鄭玉雯(民93)。九年一貫課程數學領域「連結」主題及教學落實情形之初探。國立臺中師範學院數學教育系碩士論文。
羅昭強(民91)。談國小數學建構取向教學。載於永不停止的對話-談國小數學教育(91~105),臺北:教育部。
羅昭強(民92)。九年一貫數學學習領域「暫行綱要」與「課程綱要」銜接問題。國教世紀,208,18~22。
英文部分
Anderson, J. R. (1990). Cognitive psychology and its implications (3rd ed.). New York: Freeman.
Boulton-Lewis,Cooper, T. J., G., Atweh, B., Pillay, H., & Wilss, L. (2000). Readiness for algebra. In T. Nakahra and M. Koyama (Eds.), Proceedings of the 24th International Conference for Psychology of Mathematics Education, Vol 2, 89-96. Japan Hiroshima University.
California State Board of Education(2005).Mathematics Framework for California Public Schools,Kindergarten Through Grade Twelve. Reston, VA: California State Board of Education.
California State Board of Education(2005).Draft Mathematics Framework. Reston, VA: California State Board of Education.
Clements, D. H. (1989). Computers in elementary mathematics education. New Jersey: Englewood Cliffs.
Ginsburg, H.(1989). Children's arithmetic. Pro. ed, Austin, Texas.
Hiebert, J. (1999). Relationships between research and the NCTM Standards. Journal for Research in Mathematics Education,30 (1), 3-19.
Kamii,C. & Dominick,A.(1989)The harmful effects of algorithms in grades 1-4.In:Kenny,M.J.& Morrow,L.J.(ED)The Teaching and Learning of Algorithms in School Mathematics. Reston, Va.:National Council of Teachers of Mathematics.
Kazemi, E. (2002). Exploring test performance in mathematics: the questions children's answers raise. Journal of Mathematical Behavior , 21, 203-224.
Liping, M.(1999).Knowing and teaching elementary mathematics. Mahwah, New Jersey :Lawrence Erlbaum Associates
Matz, M. (1982). Toward a process model for high school algebra errors. In D.sleeman
National Council of Teachers of Mathematics (NCTM,2000) . Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (NCTM,1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM.
Niemi, D.M.(1994).Assessing fifth-grade students’fraction understanding:A conceptual field method for fusing assessment and instruction. Unpublished doctoral dissertation, University of California, Los Angeles.
Russell, Susan Jo. (2000, November). Developing Computational Fluency with Whole Numbers in the Elementary Grade. Teaching Children Mathematics 7: 154-58.
Resnick(1989)innumeracy:mathematical illiteracy and its consequences.new york:hill and wang
Weaver, J. F. (1973). Pupil performance on examples involving selected variations of the distributive idea. The Arithmetic Teacher, 20(8), 697-704.