研究生: |
林士閎 Lin, Shih Hung |
---|---|
論文名稱: |
一具有阻抗不匹配與消除反射波功能的5Gbps傳輸器於0.18 CMOS製程的設計與實現 Design and implementation a 5Gbps transmitter with impedance mismatch and reflection cancellation in 0.18um CMOS technology |
指導教授: |
謝秉璇
Hsieh, Ping Hsuan |
口試委員: |
黃柏鈞
劉怡君 楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 傳輸器 、有線傳輸 、反射消除 、不匹配阻抗 |
外文關鍵詞: | Wireline communication, Reflection cancel, Transmitter, Impedance mismaching |
相關次數: | 點閱:105 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是呈現一具有阻抗不匹配與消除反射波功能的5Gbps傳輸器於0.18 CMOS製程的設計與實現。在電路中使用2:1多工器將一對半週期架構的資料合成一個5Gbps的偽隨機二進制序列。並使用等化器最多可以降低兩個單位時間的碼間干擾。在消除反射波功能部分則最多可以消除八個單位時間的反射波。在終端阻抗部分則使用P型金屬氧化物半導體場效電晶體陣列搭配數位控制以調整阻值,可調整阻值範圍為25歐姆至1350歐姆。可以藉由調整阻值,來達到更大的電壓振幅,可因此降低功率消耗。因為調整阻值而造成阻抗不匹配進而產生反射波,可藉由消除反射波功能來降低其影響。此架構所設計之消除反射波功能,可消除1至64個週期,最小可消除之反射波為85uA乘上當下所選擇之阻值。此傳輸器是使用0.18u CMOS製程,當操作在3.6Gbps時,在傳輸器端使用150歐姆的終端阻抗以及在接收端使用1M歐姆終端阻抗,並消除在八個週期後的反射波,所消耗的總功率為166.94毫瓦。
This thesis presents a chip-to-chip transmitter with tunable termination and reflection cancellation function. The transmitter has one 2:1 mux in the data path combining two half-rate data streams into one for a total 5Gbps. There are two taps for pre-emphasis to cancel ISI(Inter Symbol Interference) and eight taps to cancel reflection. The termination is a PMOS array for a tuning range from 25ohm to 1350ohm by digital control. By changing the termination to the right trend, the output swing could become lager, and then can lower down the power consumption. The reflection caused by mismatching termination can be cancelled by reflection cancelling taps. The structure is designed to cancel the reflection between 1 to 64 clock cycle. The resolution of cancellation depends on the termination we chosen multiply the minimum current of 85mA. The transmitter is implemented by 0.18um CMOS technology. The total power is 166.94mW with 150ohm at transmitter and 1Mohm at receier when cancelling a reflection after 8 clock cycles at 3.6Gbps.
[1] F. O’Mahony, J.E. Jaussi, J. Kennedy, G. Balamurugan, M. Mansuri, C. Roberts, S. Shekhar, R. Mooney, and B. Casper, “A 47 * 10 gb/s 1.4 mw/gb/s parallel interface in 45 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2828–2837, Dec 2010.
[2] K. Fukuda, H. Yamashita, G. Ono, R. Nemoto, E. Suzuki, N. Masuda, T. Takemoto, F. Yuki, and T. Saito, “A 12.3-mw 12.5-gb/s complete transceiver in 65-nm cmos process,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2838–2849, Dec 2010.
[3] Shih-Yuan Kao and Shen-Iuan Liu, “A 7.5-gb/s one-tap-ffe transmitter with adaptive far-end crosstalk cancellation using duty cycle detection,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 391–404, Feb 2013.
[4] R. Yuen, M. van Ierssel, A. Sheikholeslami, W.W. Walker, and Hirotaka Tamura, “A 5gb/s transmitter with reflection cancellation for backplane transceivers,” in IEEE Custom Integrated Circuits Conference, CICC, Sept 2006, pp. 413–416.
[5] Ricky Yuen, “A 6gbps transmitter with a 6gbps transmitter with isi and reflection cancellation,” M.S. thesis, University of Toronto, 2005.
[6] William J.Dally and John W.poulton, Digital System Engineering, The Press Syndicate of The University of Cambridge, 1998.
[7] Huaide Wang and Jri Lee, “A 21-gb/s 87-mw transceiver with ffe/dfe/analog equalizer in 65-nm cmos technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 909–920, April 2010.
[8] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill College, 2000.
[9] John J. O’Reilly, “Series-parallel generation of m-sequences,” Radio and Electronic Engineer, vol. 45, no. 4, pp. 171–176, April 1975.
[10] E. Laskin and S.P. Voinigescu, “A 60 mw per lane, 4 times; 23-gb/s 27 prbs generator,” in . IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC ’05, Oct 2005.