簡易檢索 / 詳目顯示

研究生: 許又瑄
Hsu, Yu-Hsuan
論文名稱: 優化(鉬修飾)鉑鈷觸媒之製程應用於真實質子交換膜燃料電池
Optimization of (molybdenum-modified) platinum-cobalt catalyst process for real proton exchange membrane fuel cells.
指導教授: 潘詠庭
Pan, Yung-Tin
口試委員: 林育正
Lin, Yu-Jeng
吳子和
Wu, Tzu-Ho
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 燃料電池鉑鈷觸媒介金屬結構製程優化
外文關鍵詞: Fuel cell, PtCo catalyst, Intermetallic structure, Process optimization
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石化燃油燃燒產生的廢氣所致溫室氣體,各國開始尋求乾淨且具經濟效益的替代能源,氫燃料電池的產物水為未來最具潛力的能源轉換系統。氫燃料電池的鉑觸媒已經普遍被使用於質子交換膜燃料電池 (Proton-Exchange Membrane Fuel Cells, PEMFC)。然而,價格高昂一直是生產成本無法降低的主要原因。觸媒以富含鉑金屬,利用地球含量高的過渡金屬(Fe,Co,Ni)形成合金已經是眾多研究團隊有效降低鉑使用率的方式。基於成本考量,低負載鉑燃料電池觸媒在實際應用中,特別對於氧還原反應 (Oxygen Reduction Reaction, ORR) ,仍然是一個研究的課題。然而,在實際燃料電池測試條件下,通過旋轉圓盤電極 (Rotating Disk Electrode, RDE) 測試條件獲得的高性能可能無法轉移到膜電極組件上。本研究通過改進鉬摻雜金屬鉑鈷觸媒的製備來解決這一問題,並縮小旋轉圓盤電極和膜電極 (Membrane Electrode Assemblies, MEA) 測試系統之間的差距。從先前的研究中,我們發現在觸媒表面摻雜鉬可以提高鉑鈷觸媒在旋轉圓盤電極條件下的性能和耐久性[1]。通過循環伏安法進行多次的預處理,以去除覆蓋觸媒表面活性位點過量的鉬。首先透過使用鹼溶液去除多餘的鉬,但是鹼的殘留不利於膜電極測試。因此,我們透過直接減少鉬的使用來修改鉬的摻雜過程,省略使用強鹼的步驟,這樣的方式提升觸媒在燃料電池中的表現也更容易用於商業生產。更進一步,為了解決貴金屬觸媒利用率的問題,我們利用較高比表面積的碳製備鉑鈷觸媒,探討觸媒載體在乙二醇還原法對於鉑金鈷觸媒的差異,並合成出分散性與奈米粒子更小的鉑鈷觸媒,這方法不僅便宜方便、適合商業化生產,在不使用高分子化學封端劑的條件下,也達到了綠色能源的目標。


    The greenhouse gases generated by the combustion of petrochemical fuels have prompted countries to seek clean and economically viable alternative energy sources. Hydrogen fuel cells, with water as the product, are considered the most promising energy conversion system for the future. Platinum catalysts in proton-exchange membrane fuel cells (PEMFC) have been widely used. However, the high cost has been a major obstacle to reducing production costs. One effective way to reduce platinum usage is through alloying with abundant transition metals (Fe, Co, Ni) with high Earth abundance. Considering cost, low-loading platinum fuel cell catalysts, especially for the oxygen reduction reaction (ORR), remain a research challenge in practical applications. However, achieving high performance obtained under rotating disk electrode (RDE) conditions in real fuel cell tests may be challenging to transfer to membrane electrode assemblies (MEA). In this study, we addressed this issue by improving the preparation of molybdenum-doped platinum-cobalt catalysts and narrowing the gap between RDE and MEA testing systems. Previous research has shown that molybdenum doping on the catalyst surface can enhance the performance and durability of platinum-cobalt catalysts under RDE conditions. Excessive molybdenum on the catalyst surface was removed through multiple cycles of pre-treatment using cyclic voltammetry. Initially, excess molybdenum was removed using an alkaline solution, but the residue of alkali was detrimental to MEA testing. Therefore, we modified the molybdenum doping process by reducing the use of alkaline solutions, making it more suitable for commercial production. Furthermore, to address the issue of precious metal catalyst utilization, we used carbon with a higher specific surface area to prepare platinum-cobalt catalysts, investigating the differences in catalyst support through the ethylene glycol reduction method. This allowed us to synthesize platinum-cobalt catalysts with improved dispersion and smaller nanoparticles. This approach is not only cost-effective and convenient for commercial production but also aligned with the goal of green energy without the need for polymer chemical capping agents.

    摘要..........................................................I Abstract.....................................................II 目錄.........................................................IV 圖目錄.......................................................VII 表目錄........................................................XI 第一章 緒論....................................................1 第二章 文獻回顧................................................2 2.1引言.......................................................2 2.2質子交換膜燃料電池組........................................3 2.3質子交換膜燃料電池工作原理...................................4 2.3.1陰極氧還原反應機制........................................6 2.3.2提升氧還原反應觸媒........................................7 2.4陰極觸媒材料................................................9 2.4.1以鉑為基礎金屬觸媒種類.....................................9 2.4.2觸媒合金與結構(核殼結構、金屬間有序結構)....................10 2.4.3鉑系列觸媒製備方法........................................13 2.4.4如何降低鉑鈷觸媒高溫燒結方法...............................16 2.4.5觸媒載體的碳材種類........................................22 2.5旋轉圓盤電極與燃料電池之間的差距.............................23 2.6研究動機...................................................27 第三章 實驗方法及步驟..........................................31 3.1實驗藥品...................................................31 3.2實驗儀器...................................................33 3.3實驗方法...................................................35 3.3.1 PtCoMo觸媒製備..........................................35 3.3.2 乙二醇還原法將PtCo觸媒合成於不同碳材......................37 3.3.3膜電極製作...............................................38 3.4觸媒及膜電極特性分析方法....................................39 3.4.1 X光粉末繞射(X-ray Powder Diffractometer, XRD)...........39 3.4.2穿透式電子顯微鏡(Transmission Electron Microscope, TEM)...40 3.4.3熱重分析儀(Thermogravimetric Analyzer, TGA)..............40 3.4.4拉曼光譜(Micro Raman Identify Dual, MRID)................41 3.4.5 感應耦合電漿發散光譜儀(Inductively Coupled Plasma Optical Emission, ICP-OES)...........................................41 3.4.6 表面積與孔洞分析儀(BET)..................................42 3.4.7 高解析x射線光電子能譜儀(High Resolution X-ray Photoelectron Spectroscope, HRXPS).........................................43 3.4.8 膜電極電化學特性測量.....................................43 第四章 結果與討論..............................................45 4.1PtCoMo觸媒材料特性鑑定與燃料電池應用.........................45 4.1.1鉑鈷觸媒合金與有序程度....................................45 4.1.2鉑鈷觸媒於碳材分佈情況....................................47 4.1.3金屬觸媒鉑鈷定量分析......................................48 4.1.4電化學表現討論............................................50 4.2 PtCoMo觸媒針對PtCo核製程改善...............................55 4.2.1碳材的特性對於PtCo觸媒合成的影響...........................55 4.2.2 PtCo合成於Vulcan結果分析.................................61 4.2.2.1 含浸法對PtCo合成於Vulcan上之XRD分析.....................61 4.2.2.2不同比例Co前驅物對PtCo合成於Vulcan上之XRD分析.............62 4.2.2.3不同比例Co前驅物對PtCo合成於Vulcan上之定量分析............64 4.2.2.4不同比例Co前驅物對PtCo合成於Vulcan上之TEM分析.............66 4.2.3 PtCo合成於不同碳材 (Vulcan XC-72R、Ketjen EC600J、Black Pearl 2000) 結果討論.................................................70 4.2.4 PtCo降低鈷前驅物比例合成於Ketjen、BP2000..................77 第五章 結論....................................................83 第六章 未來工作.................................................85 6.1 PtCo動力學控制合成於Ketjen..................................85 6.2 燃料電池測試................................................92 6.3 MNC 結構做為載體............................................94 附錄...........................................................94 參考文獻........................................................97

    1. Liang-Chen Lin, Chun-Han Kuo, Yu-Hsuan Hsu, Liang-Ching Hsu, Han-Yi Chen, Jeng-Lung Chen, and Yung-Tin Pan, High-performance intermetallic PtCo oxygen reduction catalyst promoted by molybdenum. Applied Catalysis B: Environmental, 2022. 317: p. 121767.
    2. Kui Jiao, Jin Xuan, Qing Du, Zhiming Bao, Biao Xie, Bowen Wang, Yan Zhao, Linhao Fan, Huizhi Wang, Zhongjun Hou, Sen Huo, Nigel P. Brandon, Yan Yin, and Michael D. Guiver, Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021. 595(7867): p. 361-369.
    3. Yuqing Guo, Fengwen Pan, Wenmiao Chen, Zhiqiang Ding, Daijun Yang, Bing Li, Pingwen Ming, and Cunman Zhang, The controllable design of catalyst Inks to enhance PEMFC performance: a review. Electrochemical Energy Reviews, 2021. 4(1): p. 67-100.
    4. Paul C. Okonkwo, Oladeji O. Ige, El Manaa Barhoumi, Paul C. Uzoma, Wilfred Emori, Abdelbaki Benamor, and Aboubakr M. Abdullah, Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy, 2021. 46(29): p. 15850-15865.
    5. Fei Xiao, Yu-Cheng Wang, Zhi-Peng Wu, Guangyu Chen, Fei Yang, Shangqian Zhu, Kumar Siddharth, Zhijie Kong, Aolin Lu, Jin-Cheng Li, Chuan-Jian Zhong, Zhi-You Zhou, and Minhua Shao, Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Advanced Materials, 2021. 33(50): p. 2006292.
    6. Junjie Zhao, Zhengkai Tu, and Siew Hwa Chan, Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. Journal of Power Sources, 2021. 488: p. 229434.
    7. Lixin Fan, Junjie Zhao, Xiaobing Luo, and Zhengkai Tu, Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. International Journal of Hydrogen Energy, 2022. 47(8): p. 5418-5428.
    8. Zarina Turtayeva, Feina Xu, Jérôme Dillet, Kévin Mozet, Régis Peignier, Alain Celzard, and Gael Maranzana, Manufacturing catalyst-coated membranes by ultrasonic spray deposition for PEMFC: Identification of key parameters and their impact on PEMFC performance. International Journal of Hydrogen Energy, 2022. 47(36): p. 16165-16178.
    9. Kang Yu, Chenzhao Li, Jian Xie, and Paulo J. Ferreira, Understanding the degradation mechanisms of Pt electrocatalysts in PEMFCs by combining 2D and 3D identical location TEM. Nano Letters, 2023. 23(5): p. 1858-1864.
    10. Qing Li, Liheng Wu, Gang Wu, Dong Su, Haifeng Lv, Sen Zhang, Wenlei Zhu, Anix Casimir, Huiyuan Zhu, Adriana Mendoza-Garcia, and Shouheng Sun, New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Letters, 2015. 15(4): p. 2468-2473.
    11. Won Suk Jung and Branko N. Popov, New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. ACS Applied Materials & Interfaces, 2017. 9(28): p. 23679-23686.
    12. Yu Sugawara, Michiko Konno, Izumi Muto, and Nobuyoshi Hara, Formation of Pt skin layer on ordered and disordered Pt-Co alloys and corrosion resistance in sulfuric acid. Electrocatalysis, 2018. 9(5): p. 539-549.
    13. Jennifer D. Lee, Davit Jishkariani, Yingrui Zhao, Stan Najmr, Daniel Rosen, James M. Kikkawa, Eric A. Stach, and Christopher B. Murray, Tuning the electrocatalytic oxygen reduction reaction activity of Pt–Co nanocrystals by cobalt concentration with atomic-scale understanding. ACS Applied Materials & Interfaces, 2019. 11(30): p. 26789-26797.
    14. Junrui Li, Shubham Sharma, Xiaoming Liu, Yung-Tin Pan, Jacob S. Spendelow, Miaofang Chi, Yukai Jia, Peng Zhang, David A. Cullen, Zheng Xi, Honghong Lin, Zhouyang Yin, Bo Shen, Michelle Muzzio, Chao Yu, Yu Seung Kim, Andrew A. Peterson, Karren L. More, Huiyuan Zhu, and Shouheng Sun, Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule, 2019. 3(1): p. 124-135.
    15. Jiashun Liang, Zhonglong Zhao, Na Li, Xiaoming Wang, Shenzhou Li, Xuan Liu, Tanyuan Wang, Gang Lu, Deli Wang, Bing-Joe Hwang, Yunhui Huang, Dong Su, and Qing Li, Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant L10-PtZn fuel cell cathode. Advanced Energy Materials, 2020. 10(29): p. 2000179.
    16. Xiao Duan, Feng Cao, Rui Ding, Xiaoke Li, Qingbing Li, Ruziguli Aisha, Shiqiao Zhang, Kang Hua, Zhiyan Rui, Yongkang Wu, Jia Li, Aidong Li, and Jianguo Liu, Cobalt-doping stabilized active and durable sub-2 nm Pt nanoclusters for low-Pt-loading PEMFC cathode. Advanced Energy Materials, 2022. 12(13): p. 2103144.
    17. Yijun Wu, Yige Zhao, Jingjun Liu, and Feng Wang, Adding refractory 5d transition metal W into PtCo system: an advanced ternary alloy for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2018. 6(23): p. 10700-10709.
    18. Jiashun Liang, Na Li, Zhonglong Zhao, Liang Ma, Xiaoming Wang, Shenzhou Li, Xuan Liu, Tanyuan Wang, Yaping Du, Gang Lu, Jiantao Han, Yunhui Huang, Dong Su, and Qing Li, Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angewandte Chemie International Edition, 2019. 58(43): p. 15471-15477.
    19. F. Dionigi, C. Cesar Weber, M. Primbs, M. Gocyla, A. Martinez Bonastre, C. Spöri, H. Schmies, E. Hornberger, S. Kühl, J. Drnec, M. Heggen, J. Sharman, R. Edward Dunin-Borkowski, and P. Strasser, Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Letters, 2019. 19(10): p. 6876-6885.
    20. Stefanie Kühl, Henner Heyen, and Peter Strasser, Mo-doped shaped nanoparticles based on PtNi-alloys – a promising ORR catalyst? ECS Transactions, 2016. 75(14): p. 723-730.
    21. Qingying Jia, Zipeng Zhao, Liang Cao, Jingkun Li, Shraboni Ghoshal, Veronica Davies, Eli Stavitski, Klaus Attenkofer, Zeyan Liu, Mufan Li, Xiangfeng Duan, Sanjeev Mukerjee, Tim Mueller, and Yu Huang, Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Letters, 2018. 18(2): p. 798-804.
    22. Yun Luo, Björn Kirchhoff, Donato Fantauzzi, Laura Calvillo, Luis Alberto Estudillo-Wong, Gaetano Granozzi, Timo Jacob, and Nicolas Alonso-Vante, Molybdenum doping augments platinum–copper oxygen reduction electrocatalyst. ChemSusChem, 2018. 11(1): p. 193-201.
    23. Juhyuk Choi, Jinwon Cho, Chi-Woo Roh, Beom-Sik Kim, Min Suk Choi, Hojin Jeong, Hyung Chul Ham, and Hyunjoo Lee, Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2019. 247: p. 142-149.
    24. Yuan Yuan, Zhiguo Qu, Wenkai Wang, Guofu Ren, and Baobao Hu, Illustrative case study on the performance and optimization of proton exchange membrane fuel cell. ChemEngineering, 2019. 3: p. 23.
    25. Ernest Yeager, Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1): p. 5-25.
    26. Ana M. Gómez-Marín, Juan M. Feliu, and Edson Ticianelli, Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path. ACS Catalysis, 2019. 9(3): p. 2238-2251.
    27. Peng Lang, Nannan Yuan, Qianqian Jiang, Yichi Zhang, and Jianguo Tang, Recent advances and prospects of metal-based catalysts for oxygen reduction reaction. Energy Technology, 2020. 8(3): p. 1900984.
    28. Vladimir Tripković, Egill Skúlason, Samira Siahrostami, Jens K. Nørskov, and Jan Rossmeisl, The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010. 55(27): p. 7975-7981.
    29. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892.
    30. Peter Strasser, Shirlaine Koh, Toyli Anniyev, Jeff Greeley, Karren More, Chengfei Yu, Zengcai Liu, Sarp Kaya, Dennis Nordlund, Hirohito Ogasawara, Michael F. Toney, and Anders Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010. 2(6): p. 454-460.
    31. Nagappan Ramaswamy, Swami Kumaraguru, Wenbin Gu, Ratandeep Singh Kukreja, Kang Yu, Daniel Groom, and Paulo Ferreira, High-current density durability of Pt/C and PtCo/C catalysts at similar particle sizes in PEMFCs. Journal of The Electrochemical Society, 2021. 168(2): p. 024519.
    32. Qiaoli Chen, Zhenming Cao, Guifen Du, Qin Kuang, Jin Huang, Zhaoxiong Xie, and Lansun Zheng, Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy, 2017. 39: p. 582-589.
    33. Yanling Ma, Andrew N. Kuhn, Wenpei Gao, Talha Al-Zoubi, Hui Du, Xiaoqing Pan, and Hong Yang, Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy, 2021. 79: p. 105465.
    34. Laryssa Goncalves Cesar, Ce Yang, Zheng Lu, Yang Ren, Guanghui Zhang, and Jeffrey T. Miller, Identification of a Pt3Co surface intermetallic alloy in Pt–Co propane dehydrogenation catalysts. ACS Catalysis, 2019. 9(6): p. 5231-5244.
    35. Barbara Farkaš, Christopher B. Perry, Glenn Jones, and Nora H. de Leeuw, Adsorbate-induced segregation of cobalt from PtCo nanoparticles: modeling Au doping and core AuCo alloying for the improvement of fuel cell cathode catalysts. The Journal of Physical Chemistry C, 2020. 124(33): p. 18321-18334.
    36. Feng Wang, Qi Zhang, Zhiyan Rui, Jia Li, and Jianguo Liu, High-loading Pt–Co/C catalyst with enhanced durability toward the oxygen reduction reaction through surface Au modification. ACS Applied Materials & Interfaces, 2020. 12(27): p. 30381-30389.
    37. Yunxiang Xie, Yao Yang, David A. Muller, Héctor D. Abruña, Nikolay Dimitrov, and Jiye Fang, Enhanced ORR kinetics on Au-doped Pt–Cu porous films in alkaline media. ACS Catalysis, 2020. 10(17): p. 9967-9976.
    38. Shouquan Feng, Jinli Chen, Guangfu Qian, Yanshan Mo, Jiajia Lu, Wei Chen, Lin Luo, and Shibin Yin, Metal–support interactions in a molybdenum oxide anchored PtNi alloy for improving oxygen reduction activity. ACS Applied Energy Materials, 2020. 3(12): p. 12246-12253.
    39. Zhiping Deng, Wanying Pang, Mingxing Gong, Zhehui Jin, and Xiaolei Wang, Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. Journal of Energy Chemistry, 2022. 66: p. 16-23.
    40. Deli Wang, Huolin L. Xin, Robert Hovden, Hongsen Wang, Yingchao Yu, David A. Muller, Francis J. DiSalvo, and Héctor D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013. 12(1): p. 81-87.
    41. Wei-Jie Zeng, Chang Wang, Qiang-Qiang Yan, Peng Yin, Lei Tong, and Hai-Wei Liang, Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nature Communications, 2022. 13(1): p. 7654.
    42. Dao-Jun Guo and Zhi-Hong Jing, A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells. Journal of Power Sources, 2010. 195(12): p. 3802-3805.
    43. N. H. H. Abu Bakar, M. M. Bettahar, M. Abu Bakar, S. Monteverdi, J. Ismail, and M. Alnot, Silica supported Pt/Ni alloys prepared via co-precipitation method. Journal of Molecular Catalysis A: Chemical, 2009. 308(1): p. 87-95.
    44. Andreas Freund, Jutta Lang, Thomas Lehmann, and Karl Anton Starz, Improved Pt alloy catalysts for fuel cells. Catalysis Today, 1996. 27(1): p. 279-283.
    45. San Ping Jiang, A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering: A, 2006. 418(1): p. 199-210.
    46. Lale Işıkel Şanlı, Vildan Bayram, Begüm Yarar, Sajjad Ghobadi, and Selmiye Alkan Gürsel, Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods. International Journal of Hydrogen Energy, 2016. 41(5): p. 3414-3427.
    47. Wiruyn Trongchuankij, Kejvalee Pruksathorn, and Mali Hunsom, Preparation of a high performance Pt–Co/C electrocatalyst for oxygen reduction in PEM fuel cell via a combined process of impregnation and seeding. Applied Energy, 2011. 88(3): p. 974-980.
    48. Sunhee Jo, Ki Ro Yoon, Youngjoon Lim, Taehyun Kwon, Yun Sik Kang, Hyuntae Sohn, Sun Hee Choi, Hae Jung Son, Sung Hyun Kwon, Seung Geol Lee, Seung Soon Jang, So Young Lee, Hyoung-Juhn Kim, and Jin Young Kim, Single-step fabrication of polymeric composite membrane via centrifugal colloidal casting for fuel cell applications. Small Methods, 2021. 5(8): p. 2100285.
    49. Mohammed H. Atwan, Charles L. B. Macdonald, Derek O. Northwood, and Elod L. Gyenge, Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance. Journal of Power Sources, 2006. 158(1): p. 36-44.
    50. Alexey Serov and Chan Kwak, Recent achievements in direct ethylene glycol fuel cells (DEGFC). Applied Catalysis B: Environmental, 2010. 97(1): p. 1-12.
    51. Le Xin, Zhiyong Zhang, Ji Qi, David Chadderdon, and Wenzhen Li, Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental, 2012. 125: p. 85-94.
    52. Richa Baronia, Jyoti Goel, Baijnath, Varsha Kataria, Suddhasatwa Basu, and Sunil K. Singhal, Electro-oxidation of ethylene glycol on PtCo metal synergy for direct ethylene glycol fuel cells: Reduced graphene oxide imparting a notable surface of action. International Journal of Hydrogen Energy, 2019. 44(20): p. 10023-10032.
    53. Zipeng Zhao, Zeyan Liu, Ao Zhang, Xingxu Yan, Wang Xue, Bosi Peng, Huolin L. Xin, Xiaoqing Pan, Xiangfeng Duan, and Yu Huang, Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nature Nanotechnology, 2022. 17(9): p. 968-975.
    54. Tae Yong Yoo, Jongmin Lee, Sungjun Kim, Min Her, Shin-Yeong Kim, Young-Hoon Lee, Heejong Shin, Hyunsun Jeong, Arun Kumar Sinha, Sung-Pyo Cho, Yung-Eun Sung, and Taeghwan Hyeon, Scalable production of an intermetallic Pt–Co electrocatalyst for high-power proton-exchange-membrane fuel cells. Energy & Environmental Science, 2023. 16(3): p. 1146-1154.
    55. Xin Feng, Yinyan Bai, Wenjing Zhang, Fangzheng Wang, Deen Sun, Jing Li, and Zidong Wei, Preparation of sub-1 nm Pt3Co nanoclusters via a seed-densification strategy for enhanced O2 capture in low-Pt-loading fuel cells. ACS Energy Letters, 2022: p. 628-636.
    56. Tian-Wei Song, Cong Xu, Zhu-Tao Sheng, Hui-Kun Yan, Lei Tong, Jun Liu, Wei-Jie Zeng, Lu-Jie Zuo, Peng Yin, Ming Zuo, Sheng-Qi Chu, Ping Chen, and Hai-Wei Liang, Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nature Communications, 2022. 13(1): p. 6521.
    57. Minghao Xie, Yifeng Shi, Chenxiao Wang, Ruhui Chen, Min Shen, and Younan Xia, In Situ growth of Pt–Co nanocrystals on different types of carbon supports and their electrochemical performance toward oxygen reduction. ACS Applied Materials & Interfaces, 2021. 13(44): p. 51988-51996.
    58. Baizeng Fang, Min-Sik Kim, Jung Ho Kim, Min Young Song, Yan-Jie Wang, Haijiang Wang, David P. Wilkinson, and Jong-Sung Yu, High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011. 21(22): p. 8066-8073.
    59. Yan-Jie Wang, David P. Wilkinson, and Jiujun Zhang, Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chemical Reviews, 2011. 111(12): p. 7625-7651.
    60. Shahid Zaman, Min Wang, Haijun Liu, Fengman Sun, Yang Yu, Jianglan Shui, Ming Chen, and Haijiang Wang, Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends in Chemistry, 2022. 4(10): p. 886-906.
    61. A. Solhy, B. F. Machado, J. Beausoleil, Y. Kihn, F. Gonçalves, M. F. R. Pereira, J. J. M. Órfão, J. L. Figueiredo, J. L. Faria, and P. Serp, MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon, 2008. 46(9): p. 1194-1207.
    62. J. A. Prithi, Raman Vedarajan, G. Ranga Rao, and N. Rajalakshmi, Functionalization of carbons for Pt electrocatalyst in PEMFC. International Journal of Hydrogen Energy, 2021. 46(34): p. 17871-17885.
    63. Won Suk Jung and Branko N. Popov, Improved durability of Pt catalyst supported on N-doped mesoporous graphitized carbon for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Carbon, 2017. 122: p. 746-755.
    64. Siripong Limpattayanate and Mali Hunsom, Electrocatalytic activity of Pt–Pd electrocatalysts for the oxygen reduction reaction in proton exchange membrane fuel cells: Effect of supports. Renewable Energy, 2014. 63: p. 205-211.
    65. Jiantao Fan, Ming Chen, Zhiliang Zhao, Zhen Zhang, Siyu Ye, Shaoyi Xu, Haijiang Wang, and Hui Li, Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy, 2021. 6(5): p. 475-486.
    66. Kensaku Kodama, Tomoyuki Nagai, Akira Kuwaki, Ryosuke Jinnouchi, and Yu Morimoto, Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nature Nanotechnology, 2021. 16(2): p. 140-147.
    67. Yun-Fei Xia, Pan Guo, Jia-Zhan Li, Lei Zhao, Xu-Lei Sui, Yan Wang, and Zhen-Bo Wang, How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts with rotating disk electrode. iScience, 2021. 24(9): p. 103024.
    68. Chenyu Wang and Jacob S. Spendelow, Recent developments in Pt–Co catalysts for proton-exchange membrane fuel cells. Current Opinion in Electrochemistry, 2021. 28: p. 100715.
    69. Nagappan Ramaswamy, Wenbin Gu, Joseph M. Ziegelbauer, and Swami Kumaraguru, Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. Journal of The Electrochemical Society, 2020. 167(6): p. 064515.
    70. Huiyuan Liu, Jian Zhao, and Xianguo Li, Controlled synthesis of carbon-supported Pt-based electrocatalysts for proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2022. 5(4): p. 13.
    71. Francisco Rodríguez-reinoso, The role of carbon materials in heterogeneous catalysis. Carbon, 1998. 36(3): p. 159-175.
    72. Yi Cheng, Changwei Xu, Pei Kang Shen, and San Ping Jiang, Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Applied Catalysis B: Environmental, 2014. 158-159: p. 140-149.
    73. Bohua Wu, Jiajin Zhu, Xue Li, Xiaoqin Wang, Jia Chu, and Shanxin Xiong, PtRu nanoparticles supported on p-phenylenediamine-functionalized multiwalled carbon nanotubes: enhanced activity and stability for methanol oxidation. Ionics, 2019. 25(1): p. 181-189.
    74. Xiao Xia Wang, Mark T. Swihart, and Gang Wu, Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019. 2(7): p. 578-589.
    75. Syed Shoaib Ahmad Shah, Tayyaba Najam, Muhammad Sohail Bashir, Muhammad Sufyan Javed, Aziz-ur Rahman, Rafael Luque, and Shu-Juan Bao, Identification of catalytic active sites for durable proton exchange membrane fuel cell: catalytic degradation and poisoning perspectives. Small, 2022. 18(18): p. 2106279.
    76. Hao Xu, Dan Wang, Peixia Yang, Anmin Liu, Ruopeng Li, Yun Li, Lihui Xiao, Xuefeng Ren, Jinqiu Zhang, and Maozhong An, Atomically dispersed M–N–C catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020. 8(44): p. 23187-23201.
    77. G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011. 332(6028): p. 443-447.
    78. Michel Lefèvre, Eric Proietti, Frédéric Jaouen, and Jean-Pol Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009. 324(5923): p. 71-74.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE