簡易檢索 / 詳目顯示

研究生: 李月君
Yueh-chun Li
論文名稱: 哺乳類動物的著絲點異染色質絲--鹿類的衛星DNA家族之研究
Mammalian centromeric heterochromatin-- Study of Cervidae satellite DNA families
指導教授: 許宗雄 博士
Dr. Tzong-Hsiung Hseu
林齊強 博士
Dr. Chyi-Chyang Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 116
中文關鍵詞: 著絲點異染色質絲衛星DNA鹿類
外文關鍵詞: centromere, heterochromatin, satellite DNA, cervidae
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我的博士論文主要是以鹿科的著絲點衛星DNA家族研究鹿科的染色體核形的演化情形及這些著絲點衛星DNA家族在著絲點的排列結構。目前只有衛星I DNA已經被選殖且詳細鑑定的鹿科著絲點衛星DNA家族,而衛星II 和III DNA分別只在白尾鹿及小鹿中被選殖出但並未詳細研究。而我將針對從其它鹿類選殖出來的三種衛星DNA家族及新選殖出的1kb 衛星DNA家族作更詳盡之探討。
    首先利用白尾鹿的衛星II DNA序列設計一對引子,然後以聚合鋂鏈鎖反應擴大加拿大麋鹿、中國水鹿、哥倫比亞黑尾鹿、印度山羌及中國山羌內的衛星II DNA家族。在這些鹿種內皆可得到主要長度約0.7 kb的PCR產物,而除了中國水鹿外其餘的PCR產物中有一長度約1kb。分別將此兩種PCR產物和pGEMT載體結合,然後加以選殖並定序之。其中0.7 kb的PCR產物和白尾鹿的衛星II DNA有70%以上的相似性,然而1 kb的PCR產物和白尾鹿的衛星II DNA甚至其它的衛星DNA家族並沒有任何相似性。另外也利用小鹿的衛星III DNA序列設計一對引子,同樣以聚合鋂鏈鎖反應擴大加拿大麋鹿、中國水鹿、 哥倫比亞黑尾鹿、印度山羌及中國山羌內的衛星III DNA家族。除了中國水鹿有一長度約2.2 kb 的PCR產物外,其餘皆無法得到此一衛星III DNA的PCR產物。然後將此2.2 kb 的PCR產物和pGEMT載體結合,轉送到大腸桿菌XL1-blue中然後加以選殖並定序之。此一中國水鹿的衛星III DNA和小鹿的衛星III DNA有85%以上的相似性。這些選殖出的衛星II、衛星III及衛星1 kb的DNA clones皆分別以南方吸漬法分析這些衛星DNA家族的單元體大小及限制鋂的圖譜、以染色體及染色質絲的原位螢光雜交法觀察在染色體上的分布情形及染色質絲上的排列方式。在這些衛星DNA clones中,我選定來自加拿大麋鹿及印度山羌的衛星II DNA clones加以分析,分別以Rt-0.7及Mmv-0.7命名之。Rt-0.7的GC含量佔了63 %,且佔了加拿大麋鹿的基因組含量的3.9 %。在南方吸漬法的分析中以Rt-0.7做探針顯示衛星II DNA是以0.7 kb的單元體前後排列方式形成一個高層次結構。在染色體的原位螢光雜交結果中,得知衛星II DNA分布在每一加拿大麋鹿的染色體著絲點上,且和衛星I DNA有相同的位置。因此以染色質絲的原位螢光雜交法觀察到這兩種衛星DNA是以前後排列且每種衛星DNA中之單元體都是以高度重複的方式連續排列。其中衛星II DNA高度重複連續約200微米相當於2x103 kb。此部分的結果已發表在Cytogenetic Cell Genetics 89:192-198, 2000。另一Mmv-0.7 clone,其GC含量佔了62.1 %,且佔了印度山羌的基因組含量的2.1 %。在南方吸漬法的分析中以Mmv-0.7做探針顯示衛星II DNA也是以0.7 kb的單元體前後排列方式形成一個高層次結構。我利用此一衛星II DNA clone (Mmv-0.7)及先前實驗室已選殖到並已鑑定的中國大陸山羌的衛星I DNA clone (C5)當作探針以原位螢光雜交到印度山羌的染色體上,發現衛星II DNA及衛星I DNA除了在著絲點有較強的訊號外,在染色體的兩臂上同樣也有些許較微弱的訊號。這些染色體臂上的微弱訊號共有27個,合併其他實驗室發現的染色體臂上衛星I DNA的訊號共有29個,和理論上由70個雙套染色體核形演化成6個雙套染色體核形所須的29個訊號是非常吻合的。因此推論印度山羌的染色體核形並非直接由中國大陸山羌的染色體核形演化而來的,而是可能由擁有70個雙套染色體的某一鹿科祖先演化而來的。此一結果已發表於Chromosome research 8:363-373, 2000。

    中國水鹿中的三種衛星DNA(衛星I DNA、衛星II DNA、衛星III DNA)在染色體上的分布情形,分別用先前選殖出的衛星I DNA、衛星II DNA、衛星III DNA clones 當作探針以原位螢光雜交到中國水鹿的染色體上觀察。結果顯示每個染色體上皆有衛星I DNA及衛星II DNA的訊號,其中衛星II DNA的訊號以緊密方式集中在著絲點兩側上,但衛星I DNA的訊號則以大量且鬆散如火花狀分布在著絲點旁的異染色質絲區域上,而衛星III DNA只分布在某些染色體著絲點旁的異染色質絲區域上,而這三種衛星DNA在某些染色體上的分布順序,從短臂的末端往長臂方向依序是衛星III DNA-衛星II DNA-衛星I DNA。一般而言,異染色質絲上的衛星DNA不論在何種細胞週期都是以緊密的方式呈現出,但在中國水鹿的間期細胞中發現衛星I DNA卻是以較鬆散的方式表現,而衛星II DNA仍是緊密地纏繞成點狀呈現。這種呈現鬆散的衛星I DNA可能由於染色質絲纏繞較鬆散所造成或此種衛星I DNA中有某種散佈的DNA序列分佈其中所構成的。另外,衛星II DNA的原位螢光雜交訊號在著絲點上的位置和CREST的免疫螢光測定之kinetochore的位置是相同的,因此推論衛星II DNA緊密的結構可能是著絲點蛋白鍵結在著絲點DNA上的必要條件之一。此部份結果已展示在第五十屆的美國人類遺傳學會國際會議的壁報中。

    至於其它鹿種的衛星DNA clones 也在我的論文研究中,其結果將陸續彙整發表。


    This thesis describes the characterization of several cervid centromeric satellite DNA families and their use in elucidating the karyotypic evolution within the Asian muntjac species. Cervid satellite I DNA has been well characterized previously in a number of deer species. Cervid satellite II and III DNA are relatively novel and have not been study in detail.
    The first part of thesis research involves the direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA, satellites I and II. Two cervid satellite II DNA clones of the Canadian woodland caribou (Rangifer tarandus caribou) were generated by PCR using primer sequences derived from the white tailed deer satellite II clone OvDII (Qureshi and Blake, 1995). These two clones were designated as Rt-0.5 and Rt-0.7, respectively, and found to share 96% sequence similarity between each other. The caribou satellite II clones are 63% GC-rich, and comprises some 3.9% of the caribou genome. Dual-color fluorescence in situ hybridisation (FISH) studies were performed with caribou satellite I DNA (Rt-Pst3) (Lee et al., 1994) and caribou satellite II DNA (Rt-0.7) probes to caribou metaphase chromosomes and extended chromatin fibers. Direct visualization of the genomic organization of these two satellite DNA families revealed the following: (a) Sat. I and sat.II co-localized at the centromeres of acrocentric chromosomes, whereas the centromeres of bi-armed chromosomes revealed only sat. II signals. The centromere of the Y chromosome appeared to be devoid of either satellite DNA repeat. (b) Rt-0.5 and Rt-0.7 repeats could represent specific subsets of caribou satellite II DNA that have a differential chromosomal distribution in addition to higher-order organization. (c) FISH studies on highly extended chromatin fibers demonstrated that satellite I and satellite II arrays were juxtaposed the length of a given satellite II array usually reached 200 mm, corresponding to 2 x 103 kb of DNA at a given centromere. Results of this study have been published (Li et al., 2000a).

    In the second part of this thesis, a cervid satellite II DNA clone was generated from PCR amplification of Indian muntjac genomic DNA using primer sequences derived from OvDII. The Indian Muntjac satellite II clone (Mmv-0.7) was characterized by a tandem repetition of 0.7-kb monomers, 62.1% GC-rich, and comprised approximately 2.1% of the Indian muntjac genome. Dual colored FISH studies were performed with the Indian muntjac satellite I DNA (C5 clone) (Lin et al., 1991) and this satellite II DNA (Mmv-0.7 clone) as probes to Indian muntjac metaphase chromosomes. The results obtained enabled us to more precisely define the chromosome breakage and fusion sites that are likely associated with the formation of the present-day Indian muntjac karyotype (2n=6/7). Furthermore, the study showed a total of 27 distinct interstitial hybridization sites, in addition to pericentromeric signals. This is remarkably close to the theoretical maximum number of 29 interstitial sites expected from chromosome fusions involving a deer species with 70 acrocentric chromosomes. This new finding further hints at the possibility that the Indian muntjac karyotype may have evolved directly from a ancestral deer species with a 2n=70 karyotype rather than from an intermediate Chinese muntjac-like species with a 2n=46 karyotype (Lin et al., 1991). Results from this part of study have also now been published (Li et al., 2000b).

    The third part of this thesis research deals with genomic organization of several cervid satellite DNA families in the Chinese water deer (Hydropotes inermis), the muntjac species (Muntiacus muntjak vaginalis and Muntiacus reevesi) and Columbian black tailed deer (Odocoileus hemionus hemionus). The water deer appeared to have two types of centromeric heterochromatin which are resolvable by FISH analysis using cervid satellite I, II and III DNAs (water deer satellite III clone was derived from PCR products using primer sequences of the roe deer satellite III DNA (Buntjer et al., 1998) probes to metaphase chromosomes or resting nuclear preparations. The large cluster of hybridization signal in the centromeric and pericentromeric region produced by satellite I and satellite III DNA probes appeared as a group of small fluorescent spots. This unique hybridization signal pattern was also observed in the resting nuclei. These findings suggested that the satellite I and III DNA chromatin is more diffuse with chromatin fiber extended out over a large area. Whereas, the hybridization signal with satellite II DNA appeared as pairs of distinct fluorescent spots located at the primary constrictions. These pairs of satellite DNA II signals also co-localized with the immunofluorescent signals produced by the human CREST anti-sera. These observations suggested that satellite II chromatin is more condensely packaged. Such a manner of chromatin packing may be a prerequisite for CENPs binding.

    During the PCR cloning experiments of cervid satellite II DNAs, another satellite DNA organized as 1-kb monomer repeat was also obtained. This 1-kb satellite DNAs has little significant homology to satellites I, II and III and is thought to potentially be a new cervid satellite DNA family which exists in the pericentric regions of the majority of the Munticus chromosomes and in the centromeric regions of certain chromosomes of the mule deer as well. Part of the results from the above study have been presented in the 50th Annual Meeting of the American Society of Human Genetics, Philadelphia, Oct. 3-7, 2000 (American Journal of Human Genetics 67:A155, 2000)

    Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923-1938.
    Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludena P, Sentis C, Tyler-Smith C, Villasante A (1992) Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA 89:4663-4667.
    Agresti A, Rainaldi G, Lobbiani A, Magnani I, Di Lernia R, Meneveri R, Siccardi AG, Ginelli E (1987) Chromosomal location by in situ hybridization of the human Sau3A family of DNA repeats. Hum Genet 75:326-332.
    Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1:15-26.
    Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KH (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8:217-227.
    Baum M, Ngan VK, Clarke L (1994) The centromere K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Cell Biol 5:747-761.
    Bogenberger JM, Neumaier PS, Fittler F (1985) The Muntjak satellite 1A sequence is composed of 31-bp-pair internal repeats that are highly homologous to the 31-base-pair subrepeats of the bovine satellite 1.715. Eur J Biochem 148:55-59.
    Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid. Planococcus citri. Genetics 151:1471-8.
    Bram R, Kornberg R (1987) Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol 7:403-409.
    Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol. 16:4349-4356.
    Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR (1981) Kinetochroe structure, duplication, and disribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91:95-102.
    Brinkley BR, Stubblefield E (1966) The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28-43.
    Buntjer JB, Nijman IJ, Zijlstra C, Lenstra JA (1998) A satellite DNA element specific for roe deer (Capreolus capreolus). Chromosoma 107:1-5
    Cambareri EB, Aisner R, Carbon J (1998) Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 18:5465-5477.
    Choo KH, Earle E, McQuillan C (1990) A homologous subfamily of satellite III DNA on human chromosomes 14 and 22. Nucleic Acids Res 18:5641-5648.
    Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179-1182.
    Choo KHA (1997) The centromere. Oxford University Press, Oxford.
    Choo KHA (2000) Centromerization. Trends Cell Biol 10:182-188.
    Clarke L (1998) Centromeres: protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Devel 8:212-218.
    Clarke L, Carbon J (1985) Strucutre and function of yeast centromeres. Ann Rev Genet 19:29-56.
    Cooke HJ, Schmidtke J, Gosden JR (1982) Characterisation of a human Y chromosome repeated sequence and related sequences in higher primates. Chromosoma 87:491-502.
    Cooper KF, Fisher RB, Tyler-Smith C (1992) Structure of the pericentric long arm region of the human Y chromosome. J Mol Biol 228:421-432.
    Cooper KF, Fisher RB, Tyler-Smith C (1993) Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J Mol Biol 230:787-799.
    Copenhaver GP, Preuss D (1999) Centromeres in the genomic era: unraveling paradoxes. Curr Opin Plant Biol 2:104-108.
    Corneo G, Ginelli E, Polli E (1967) A satellite DNA isolated from human tissues. J Mol Biol 23:619-622.
    Corneo G, Ginelli E, Polli E (1971) Renaturation properties and localization in heterochromatin of human satellite DNA's. Biochem Biophys Acta 247:528-534.
    Cortadas J, Macaya G, Bernardi G (1977) An analysis of the bovine genome by density gradient centrifugation: fractionation in Cs2SO4/3,6-bis(acetatomercurimethyl)dioxane density gradient. Eur J Biochem 76:13-19.
    Cottarel B, Shero JH, Hieter P, Hegemann JH (1989) A 125 base-pair CEN6 DNA gragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342-3349.
    Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200-204.
    Dawe R, Reed L, Yu H, Muszynski M, Hiatt E (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227-1238.
    Dobie KW, Har KL, Maggert KA, Karpen GH (1999) Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 9:206-217.
    Dorer DR (1997) Do transgene arrays form heterochromatin in vertebrates? Transgenic Res 6:3-10.
    Dorer DR, Henikoff S (1994) Expansioins of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:993-1002.
    du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144-153.
    Dutrillaux, B. (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48:251-314.
    Earnshaw, W.C. and Rothfield, N.F. (1985) Identification of a family of three related centromere proteins using auroimmune sera from patients with scleroderma. Chromosoma 91:313-321.
    Farr, C.J., Bayne, R.A., Kipling, D., Mills, W., Critcher, R. and Cooke, H.J. (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14:5444-5454.
    Fontana, F. and Rubini, M. (1990) Chromosomal evolution in Cervidae. BioSystems 24:157-174.
    Garagna, S., Marziliano, N., Zuccotti, M., Searle, J.B., Capanna, E. and Redi, C.A. (2001) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci USA 98:171-175
    Garagna, S., Redi, C.A., Capanna, E., Andayani, N., Alfano, R.M., Doi, P. and Viale, G. (1993) Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64:247-55
    Garrick, D., Fiering, S., Martin, D.I.K. and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat Genet. 18:56-59.
    Goday, C. and Pimpinelli, S. (1989) Centromere organization in meiotic chromosomes of Parascaris univalesns. Chromosoma 98:160-166.
    Greig, G.M. and Willard, H.F. (1992) Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12:573-580
    Guy, J., Spalluto, C., McMurray, A., Hearn, T., Crosier, M., Viggiano, L., Miolla, V., Archidiacono, N., Rocchi, M., Scott, C., Lee, P.A., Sulston, J., Rogers, J., Bentley, D. and Jackson, M.S. (2000) Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10q. Hum Mol Genet 9:2029-42
    Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. and Willard, H.F. (1997) Formation of de novo centromeres and construction of first generation human artificial microchromosmes. Nat Genet 15:345-355.
    Harushima, Y., Yano, M., Shomura, A., Sato, M., Shimano, T., Kuboki, Y., Yamamoto, T., Lin, S.Y., Antonio, B.A., Parco, A., Kajiya, H., Huang, N., Yamamoto, K., Nagamura, Y., Kurata, N., Khush, G.S. and Sasaki, T. (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479-494.
    He, D., Zeng, C., Woods, K., Zhong, L., Turner, D., Busch, R.K., Brinkley, B.R. and Busch, H. (1998) CENP-G: a new centromeric protein that is associated with the a-1 satellite DNA subfamily. Chromosoma 107:189-197.
    Henikoff, S. (2000) Heterochromatin function in complex genomes. Biochem Biophys Acta 1470:1-8.
    Henikoff, S. and Matzke, M.A. (1997) Exploring and explaining epigenetic effects. Trends Genet 13:293-295.
    Henikoff, S., Greene, E.A., Peitrokovski, S., Bork, P., Attwood, T.K. and Hood, L. (1997) Gene families the taxonomy of protein paralogs and chimeras. Science 278:609-614.
    Hennig, W. (1986) Heterochromatin and germ line-restricted DNA. In: Hennig W (ed) Germ line-soma differentiation. Results and problems in cell differentiation, vol 13. Springer, Berlin Heidelberg, pp175-192.
    Hieter, P., Pridmore, D., Hegemann, J., Thomas, M., Davis, R. and Phillipsen, P. (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913-921
    Horz, W. and Altenburger, W. (1981) Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res 9:683-96
    Hsu, T.C., Pathak, S. and Chen, T.R. (1975) The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet. Cell Genet 15:41-49.
    Iannuzzi. L., Di Berardino. D., Gustavsson, I., Ferrara, L. and Di Meo, G.P. (1987) Centromeric loss in translocations of centric fusion type in cattle and river buffalo. Hereditas 106:73:81.
    Ikeno, M., Grimes, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N.I., Cooke, H. and Masumoto, H. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotech 16:431-439.
    Ikeno, M., Masumoto, H. and Okazaki, T. (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3:1245-1257
    Jackson, M.S., Slijepcevic, P. and Ponder, B.A. (1993) The organization of repetitive sequences in the pericentromeric region of human chromosome 10. Nucleic Acids Res 21:5865-74
    Jiang, W., Middleton, K., Yoon, H.J., Fouquet, C. and Carbon, J. (1993) An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol 13:4884-4893.
    Johnson, D.H., Kroisel, P.M., Klapper, H.J. and Rosenkranz, W.( 1992) Microdissection of a human marker chromosome reveals its origin and a new family of centromeric repetitive DNA. Hum Mol Genet 1:741-747
    Karpen, G.H. and Allshire, R.C. (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489-496.
    Kaszas, E. and Birchler, J. (1996) Misivision analysis of centromere structure in maize. EMBO J 15:5246-5255.
    King, M. (1993) Species Evolution: The Role of Chromosome Change (Cambridge University Press, Cambridge, U.K.)
    Kingswood, S.C., Kumamoto, A.T., Charter, S.J., Houck, M.L. and Benirschke, K. (2000) Chromosomes of the antelope genus Kobus (Artiodactyla, Bovidae): karyotypic divergence by centric fusion rearrangements. Cytogenet Cell Genet 91:128-33
    Kolnicki, R.L. (2000) Kinetochore reproduction in animal evolution: cell biological explanation of karyotypic fission theory. Proc Natl Acad Sci USA 97:9493-9497
    Kumamoto, A.T., Charter, S.J., Kingswood, S.C., Ryder, O.A. and Gallagher, Jr. D.S. (1999) Centric fusion differences among Oryx dammah, O. gazella, and O. leucoryx (Artiodactyla, Bovidae). Cytogenet Cell Genet 86:74-80.
    Kurnit, D.M., Shafit, B.R. and Maio, J.J. (1973) Multiple satellite deoxyribonucleic acids in the calf and their relation to the sex chromosomes. J Mol Biol 81:273-284
    Lan, H., Wang, W. and Shi, L.M. (1995) Phylogeny of Muntiacus (Cervidae) based on mitochondrial DNA restriction maps. Biochem Genet 33: 377-388.
    Le, M., Duricka, D., and Karpen, G.(1995) Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141:283-303.
    Lechner, J. and Carbon, J. (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717-725.
    Lee, C. and Lin, C.C. (1996) Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species. Chromosome Res 4: 428-436.
    Lee, C., Court, D.R., Cho, C., Haslett, J. and Lin, C.C. (1997) Higher-order organization of subrepeats and the evolution of cervid satellite I DNA. J Mol Evol 44:327-335.
    Lee, C., Critcher, R., Zhang, J.G., Mills, W. and Farr, C.J. (2000 ) Distribution of gamma satellite DNA on the human X and Y chromosomes suggests that it is not required for mitotic centromere function. Chromosoma 109:381-389
    Lee, C., Li, X., Jabs, E.W., Court, D. and Lin, C.C. (1995) Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence. Chromosoma 10:103-112
    Lee, C., Ritchie, D.B.C. and Lin, C.C. (1994) A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Chromosome Res 2:293-306.
    Lee, C., Sasi, R. and Lin, C.C. (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63:156-159.
    Lee, C., Wevrick, R., Fisher, R.B., Ferguson-Smith, M.A. and Lin, C.C. (1997) Human centromeric DNAs. Hum Genet 100:291-304.
    Li, Y.C., Lee, C., Hseu, T.H., Li, S. Y. and Lin, C.C. (2000a) Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Cytogenet Cell Genet 89:192-198.
    Li, Y.C., Lee, C., Sanoudou, D., Hseu, T.H., Li, S. Y. and Lin, C.C. (2000b) Interstitial colocalization of two cervid satellites DNAs involved in the genesis of the Indian muntjac karyotype. Chromosome Res 8:363-373.
    Lin, C.C., Sasi, R., Fan, Y-S. and Chen, Z-Q. (1991) New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Chromosoma 102:333-339.
    Lin, C.C., Sasi, R., Lee, C., Fan, Y.S. and Court, D. (1993) Isolation and identification of a novel tandemly repeated DNA sequence in the centromeric region of human chromosome 8. Chromosoma 102:333-339
    Lohe, A. and Roberts, P. (1988) Evolution of satellite DNA sequences in Drosophila. In Heterochromatin: Molecular and Structural Aspects, ed. Verma, R.S. Cambridge University Press, Cambridge, 148-186.
    Maio, J.J. (1971) DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol 56:579-595.
    Manuelidis, L. (1981) Consensus sequence of mouse satellite DNA indicates it is derived from tandem 116 base pair repeats. FEBS Lett 129:25-28
    Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. and Okazaki, T. (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963-1973.
    Matthey, R. (1973) In The Chromosome Formulae of Eutherian Mammals, in Cytotaxonomy and Vertebrate Evolution, eds. Chiarellia, A.B. & Capanna, E. (Academic, London), pp.531-616.
    McEwen, B.F., Hsieh, C.E., Mattheyses, A.L. and Rieder, C.L. (1998) A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107:366-375.
    Meneveri, R., Agresti, A., Della Valle, G., Talarico, D., Siccardi, A.G. and Ginelli, E. (1985) Identification of a human clustered G + C-rich DNA family of repeats (Sau3A family). J Mol Biol 186:483-489.
    Meneveri, R., Agresti, A., Marozzi, A., Saccone, S., Rocchi, M., Archidiacono, N., Corneo, G., Della Valle, G. and Ginelli, E. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene 123:227-234
    Metzdorf, R., Gottert, E. and Blin, N. (1988) A novel centromeric repetitive DNA from human chromosome 22. Chromosoma 97:154-158
    Meyne, J., Goodwin, E.H. and Moyzis, R.K. (1994) Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA. Chromosoma 103:99-103.
    Migeon, B.R. (1994) X-chromosome inactivation: molecular mechanisms and genetic consequences. Trends Genet 10:230-235.
    Mode, W.S., Gallagher, D.S. and Womack, J.E. (1996) Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia). J Mol Evol 42:337-349.
    Moore, G., Aragon-Alcaide, L., Roberts, M., Reader, S., Miller, T. and Foote, T. (1997) Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol Biol 35:17-23.
    Moroi, Y., Peebles, C., Fritzler, M., Steigerwald, J., and Tan, E. (1980) Autoantibody to centromere (kinetochore) in Scleroderma sera. Proc Natl Acad Sci USA 77:1627-1631
    Moyzis, R.K., Albright, K.L., Bartholdi, M.F., Cram, L.S., Deaven, L.L., Hildebrand, C.E., Joste, N.E., Longmire, J.L., Meyne, J. and Schwarzacher-Robinson, T. (1987) Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95:375-386.
    Mullenbach, R., Lutz, S., Holzmann, K., Dooley, S. and Blin, N. (1992) A non-alphoid repetitive DNA sequence from human chromosome 21. Hum Genet 89:519-523
    Mullenbach, R., Pusch, C., Holzmann, K., Suijkerbuijk, R. and Blin, N. (1996) Distribution and linkage of repetitive clusters from the heterochromatic region of human chromosome 22. Chromosome Res 4:282-287
    Muller, H. (1930) Types of visible variations induced by X-rays in Drosophila. J. Genet. 22:299-334.
    Murphy, T.D. and Karpen, G.H. (1995) Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell 81:139-148
    Murphy, T.D. and Karpen, G.H. (1995) Localization of centromere function in a Drosophila minichromosome. Cell 8:599-609
    Murphy, T.D. and Karpen, G.H. (1995) Localization of centromere function in a Drosophila minichromosome. Cell 82:599-609.
    Nachman, M.W. and Searle, J.B. (1995) Trends Ecol Evol 10:397-402
    Nakahori, Y., Mitani, K., Yamada, M. and Nakagome, Y. (1986) A human Y-chromosome specific repeated DNA family (DYZ1) consists of a tandem array of pentanucleotides. Nucleic Acids Res 14:7569-7580.
    Neitzel, H. (1987) Chromosome evolution of cervidae: Karyotypic and molecular aspects. In: Obe G, Basler A, eds. Cytogenetics. Berlin: Springer-Verlag, pp.90-112.
    O’Neill, R.J., O’Neill, M.J. and Graves, J.A. (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393:68-72.
    Pidoux, A.L. and Allshire, R.C. (2000) Centromeres; getting a grip of chromosomes. Curr Opin Cell Biol. 12:308-319.
    Pimpinelli, S. and Goday, C. (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310-315.
    Platero, J.S., Hartnett, T. and Eissenberg, J.C. (1995) Functional analysis of the chromo domain of HP1. EMBO J 14:3977-3986
    Power, M.M. (1990) Chromosomes of the horse. In “Advances in Veterinary Science and Comparative Medicine” (R.A. McFeely, Ed.), Vol. 34, pp.131-167, Academic Press, New York.
    Presting, G.G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721-729-8.
    Prosser, J., Frommer, M., Paul, C. and Vincent, P.C. (1986) Sequence relationships of three human satellite DNAs. J Mol Biol 187:145-155.
    Qureshi, S.A. and Blake, R.D. (1995) Sequence characteristics of a cervid DNA repeat family. J Mol Evol 40:400-404.
    Rattner, J.B. (1991) The structure of the mammalian centromere. Bioessays 13:51-56
    Rosenberg, H., Singer, M. and Rosenberg, M. (1978) Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. Science 200:394-402.
    Ryder, O.A., Epet, N.C. and Benirschke, K. (1978) Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20:323-350.
    Sabl, J.F. and Henikoff, S. (1996) Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics 142:447-458.
    Saffery, R., Earle, E., Irvine, D.V., Kalitsis, P. and Choo, K.H. (1999) Conservation of centromere protein in vertebrates. Chromosome Res 7:261-265
    Saffery, R., Irvine, D.V., Griffiths, B., Kalitsis, P., Wordeman, L. and Choo, KHA (2000) Human centromeres and neocentromers show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet 9:175-185.
    Scherthan, H. (1991) Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species. Hereditas 115:43-49
    Scherthan, H. (1995) Chromosome evolution in muntjac revealed by centromere, telomere and whole chromosome paint probes. Kew Chromosome Conference IV:267-280.
    Shi, L.M., Ye, Y.Y. and Duan, X.S. (1980) Comparative cytogenetic studies on the red muntjac, Chinese muntjac and their F1 hybrids. Cytogenet Cell Genet 26:22-27.
    Shiels, C., Coutelle, C. and Huxley, C. (1997) Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p. Genomics 44:35-44
    Smit, A.F.A. (1996) The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6:743-748.
    Steinemann, M. and Steinemann, S. (1997) The enigma of Y chromosme degeneration TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila Miranda. Genetics 145:261-266.
    Steiner, N.C. and Clarke, L. (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865-874.
    Sugata, N., Li, S., Earnshaw, C.C., Yen, T.J., Yoda, K., Masumoto, H., Munekata, E., Warburton, P.E. and Todokoro, K. (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes. Hum Mol Genet 9:2919-2926.
    Sun, X., Wahlstrom, J. and Karpen, G. (1997) Molecular structure of a functional Drosophila centromere. Cell 91(7):1007-1019.
    Taparowsky, E.J. and Gerbi, S.A. (1982) Structure of 1.71 lb gm/cm(3) bovine satellite DNA: evolutionary relationship to satellite I. Nucleic Acids Res 10:5503-5515
    ten Hoopen, R., Manteuffel, R., Dolezel, J., Malysheva, L. and Schubert, I. (2000) evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482-489.
    Todd, N.B. (1970) Karyotypic fissioning and canid phylogeny. J Theor Biol 26:445-80
    Trowell, H.E., Nagy, A., Vissel, B. and Choo, K.H. (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum Mol Genet 2:1639-1649
    Tyler-Smith, C. (1987) Structure of repeated sequences in the centromeric region of the human Y chromosome. Development 101 Suppl:93-100
    Tyler-Smith, C. and Floridia, G. (2000) Many paths to the top of the mountain: diverse evolutionary solutions to centromere structure. Cell 102:5-8.
    Vafa, O., Shelby, R.D. and Sullivan, K.F. (1999) CENP-A associated complex satellite DNA in the kinetochore of the Indian muntjac. Chromosoma 108:367-374.
    Venter, J.C., Adams, M.D., Myers,E.W. et al. (2001) The Sequence of the Human Genome. Science 291:1304-1351.
    Vissel, B. and Choo, K.H. (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5:407-414
    Waye, J.S. and Willard, H.F. (1987) Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res 15:7549-7569.
    Waye, J.S. and Willard, H.F. (1989) Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86:6250-4
    Wevrick, R. and Willard, H.F. (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394-9398.
    Wevrick, R. and Willard, H.F. (1991) Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucleic Acids Res 19:2295-2301
    Wevrick, R., Willard, V.P. and Willard, H.F. (1992) Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14:912-23
    Willard, H.F. (1990) Centromeres of mammalian chromosomes. Trends Genet 6:410-416.
    Williams, B.C., Murphy, T.D., Goldberg, M.L. and Karpen, G.H. (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30-37.
    Wong, A.K. and Rattner, J.B. (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res 16:11645-11661
    Wong, A.K., Biddle, F.G. and Rattner, J.B. (1990) The chromosomal distribution of the major and minor satellite is not conserved in the genus Mus. Chromosoma 99:190-5
    Wreggett, K.A., Hill, F., James, P.S., Hutchings, A., Butcher, G.W. and Singh, P.B. (1994) A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet Cell Genet.66:99-103.
    Wurster, D.H. and Benirschke, K. (1967) Chromosome studies in some deer, the springbox, and the pronghorn, with notes on placentation in deer. Cytologia 32:273-285.
    Wurster, D.H. and Benirschke, K. (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1364-1366.
    Yang, F., Carter, N.P., Shi, L. and Ferguson-Smith, M.A. (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642-652.
    Yang, F., Muller, S., Just, R., Ferguson-Smith, M.A. and Wienberg, J. (1997a) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396-401
    Yang, F., O’Brien, P.C.M., Wienberg, J. and Ferguson-Smith, M.A (1997b) A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5:109-117.
    Yang, F., O’Brien, P.C.M., Wienberg, J., Neitzel, H., Lin, C.C. and Ferguson-Smith, M.A. (1997c) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37-43.
    Yoder, J.A., Walsh, C.P. and Bestor, T.H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Gent. 13:335-340.
    Yu, L.C., Lowensteiner, D., Wong, E.F.K., Sawada, I., Mazrimas, J. and Schmid, C. (1986) Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: Their presence in the Chinese muntjac. Chromosoma 93: 521-528.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE