簡易檢索 / 詳目顯示

研究生: 黃晨綺
論文名稱: 立體磁性環形結構的製作與磁壁動態之研究
Domain wall dynamics of 3D thin film magnetic rings
指導教授: 衛榮漢
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 環形磁膜磁阻
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗藉由電子束微影技術,電子束蒸鍍系統以及濕式蝕刻的方式,利用材料熱膨脹係數的不同造成應力釋放使結構捲曲,製作出立體的磁性環形結構,透過本實驗室自行架設的磁阻量測系統,來量測此立體環形結構的磁阻性質。理論上,平面磁性環形結構在外加磁場下,其兩端的渦旋磁壁旋性是隨機產生,可能產生相同旋性渦旋磁壁的封閉磁化態,形成兩階段的翻轉;或是產生相反旋性的渦旋磁壁,此種結構不會產生封閉磁化態,因而形成ㄧ階段翻轉。由磁阻量測結果可知此長條狀磁膜平面時的磁阻性質和捲曲成立體環狀後的磁阻性質明顯有很大的差異。
    此外,我們改變實驗條件如基板二氧化矽的厚度、所鍍的金屬材料,對環形結構之捲曲程度與所成環形大小之影響加以研究探討,並改變環形結構的長度、線寬和釘扎缺口來探討內部磁化態的轉變。


    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章 理論基礎與文獻回顧 3 2.1磁性理論 3 2.2磁區的形成 4 2.3磁壁 6 2.4磁阻效應 7 2.5磁化暫穩態相關文獻 9 2.6立體結構相關文獻 20 第三章、實驗方法與步驟 30 3.1樣本設計 30 3.2實驗設備 33 3.1.1電子束曝寫系統 33 3.1.2電子槍蒸鍍系統 33 3.1.3濕式蝕刻溶液 33 3.1.4磁阻量測系統 34 3.3樣品製作流程 35 第四章、實驗結果與討論 38 4.1樣品製作結果 38 4.2磁膜材料與厚度對捲曲程度的影響 39 4.2.1以鈦Ti為導線材料 39 4.2.2以金Au為導線材料 41 4.3捲曲前後的磁阻量測結果比較 43 4.4改變實驗條件之磁阻量測結果 47 4.4.1不同磁膜厚度 47 4.4.2不同磁膜長度 49 4.4.3磁膜形狀有無缺口 50 4.5轉角度量測 50 第五章 結論與未來展望 56 參考文獻 57

    [1] K. Y. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, “Eigenfrequencies of vortex state excitations in magnetic submicron-size disks,” Journal of Applied Physics, 91 (2002), 8037-8039.
    [2] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science, 289 (2000), 930-932.
    [3] K. Y. Guslienko and V. Novosad, “Vortex state stability in soft magnetic cylindrical nanodots,” Journal of Applied Physics, 96 (2004), 4451- 4455.
    [4] P. Vavassori, N. Zaluzec, V. Metlushko, V. Novosad, B. Ilic, and M. Grimsditch, “Magnetization reversal via single and double vortex states in submicron Permalloy ellipses,” Physical Review B, 69 (2004), 214404-214409.
    [5] K. S. Buchanan, P. E. Roy, M. Grimsditch, F. Y. Fradin, K. Y. Guslienko, S. D. Bader, and V. Novosad, “Soliton-pair dynamics in patterned ferromagnetic ellipses,” Nature Physics, 1 (2005), 172-176.
    [6] S. B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, and H. A. Padmore, “Vortex core-driven magnetization dynamics,” Science, 304 (2004), 420-422.
    [7] K. S. Buchanan, P. E. Roy, F. Y. Fradin, K. Y. Guslienko, M. Grimsditch, S. D. Bader, and V. Novosad, “Vortex dynamics in patterned ferromagnetic ellipses,” Journal of Applied Physics, 99 (2006), 172-176.
    [8] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science, 289 (2000), 930-932.
    [9] J. Rothman, M. Klaui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui, and R. Speaks, “Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets,” Physical Review Letters, 86 (2001), 1098-1101.
    [10] M. Klaui, J. Rothman, L. Lopez-Diaz, C. A. F. Vaz, J. A. C. Bland, and Z. Cui, “Vortex circulation control in mesoscopic ring magnets,” Applied Physics Letters, 78 (2001), 3268-3270.
    [11] M. Klaui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, and E. Cambril, “Controlled magnetic switching in single narrow rings probed by magnetoresistance measurements,” Applied Physics Letters, 81 (2002), 108-110.
    [12] S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L. D. Buda, and K. Ounadjela, “Flux closure structures in cobalt rings,” Physical Review Letters, 86 (2001), 1102-1105.
    [13] Y. G. Yoo, M. Klaui, C. A. F. Vaz, L. J. Heyderman, and J. A. C. Bland, “Switching field phase diagram of Co nanoring magnets,” Applied Physics Letters, 82 (2003), 2470-2472.
    [14] D. Buntinx, A. Volodin, and C. Van Haesendonck, “Magnetoresistance of a mesoscopic Ni80Fe20 ring,” Journal of Magnetism and Magnetic Materials, 272 (2004), E1269-E1271.
    [15] M. Klaui, C. A. F. Vaz, J. A. C. Bland, L. J. Heyderman, F. Nolting, A. Pavlovska, E. Bauer, S. Cherifi, S. Heun, and A. Locatelli, “Head-to-head domain-wall phase diagram in mesoscopic ring magnets,” Applied Physics Letters, 85 (2004), 5637-5639.
    [16] M. Klaui, H. Ehrke, U. Rudiger, T. Kasama, R. E. Dunin-Borkowski, D. Backes, L. J. Heyderman, C. A. F. Vaz, J. A. C. Bland, G. Faini, E. Cambril, and W. Wernsdorfer, “Direct observation of domain-wall pinning at nanoscale constrictions,” Applied Physics Letters, 87 (2005), 102509-1.
    [17] M. F. Lai, C. N. Liao, Z. H. San, C. P. Lee, Y. P. Hsieh, and T. F. Ho, “Dependence of magnetization processes on vortex helicities in permalloy nanorings,” Journal of Applied Physics, 103 (2008), 07C517-1.
    [18] M. F. Lai, Z. H. Wei, C. R. Chang, J. C. Wu, J. H. Kuo, and J. Y. Lai, “Influence of vortex domain walls on magnetoresistance signals in Permalloy rings,” Physical Review B, 67 (2003), 104419-1.
    [19] X. Y. Kong, and Z. L. Wang, “Spontaneous polarization and helical nanosprings of piezoelectric nanobelts,” Nano Letters, 3 (2003), 1625-1631.
    [20] X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts,” Science, 303 (2004), 1348-1351.
    [21] P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelt into superlattice-structured nanohelices,” Science, 309 (2005), 1700-1704.
    [22] L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell, and B. J. Nelson, “Artificial bacterial flagella: fabrication and magnetic control,” Applied Physics Letters, 94 (2009), 064107-1.
    [23] D. J. Bell, L. Dong, B. J. Nelson, M. Golling, L. Zhang, and D. Grutzmacher, “Fabrication and characterization of three- dimensional InGaAs/GaAs nanosprings,” Nano Letters, 6 (2006), 725-729.
    [24] C. L. Chua, D. K. Fork, K. V. Schuylenbergh, and J. P. Lu, ”Out-of-plane high-Q inductors on low-resistance silicon,” Journal of Microelectromechanical Systems, 12 (2003), 989-995.
    [25] T. G. Leong, P. A. Lester, T. L. Koh, E. K. Call, and D. H. Gracias, “Surface tension-driven self-folding polyhedra,” Langmuir, 23 (2007), 8747-8751.
    [26] N. Bassik, G. M. Stern, and D. H. Gracias, “Microassembly base on hands free origami with bidirectional curvature,” Applied Physics Letters, 95 (2009), 091901-1.
    [27] T. G. Leong, C. L. Randall, B. R. Bensn, A. M. Zarafshar, and D. H. Gracias, “Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells,” Lab on a Chip, 8 (2008), 1621-1624.
    [28] N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Advanced Materials, 20 (2008), 4760–4764.
    [29] J. S. Randhawa, M. D. Keung, P. Tyagi, and D. H. Gracias, “Reversible actuation of microstructures by surface-chemical modification of thin film bilayers,” Advanced Materials, 22 (2010), 407–410.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE