簡易檢索 / 詳目顯示

研究生: 許喆翔
Hsu, Che Hsiang
論文名稱: 矽油應用於丙酮與氨氣之選擇性前處理
Selective Pretreatment by Silicone Oil to Distinguish Ammonia from Acetone
指導教授: 葉哲良
Yeh, Jer Liang
口試委員: 王玉麟
黃郁棻
黃國政
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 氣體感測器氨氣丙酮矽油前處理
外文關鍵詞: gas sensor, ammonia, acetone, silicone oil, pretreatment
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣體感測具有檢測快速與過程簡便的優點,有發展應用到診斷疾病的趨勢,進行快速的診斷,或是用於追蹤慢性疾病之病況。尤其肝臟疾病已成為國人不可
    忽視的問題,目前肝臟疾病檢測通常是透過血液檢測或影像學的判定,無法做立即性檢測及追蹤,對於高危險群與肝病患者相當不便。因呼氣中的特定氣體能反應人體臟器健康,能夠由呼氣中特定氣體的濃度來協助判斷肝臟的代謝情形,再利用氨氣氣體感測器,可以達到非侵入式的檢測方式,有助於肝臟疾病的早期預警與居家照顧。人體呼氣組成非常複雜,氣體感測用於人體呼氣檢測將面臨選擇性的問題,由揮發性氣體與感測器產生反應的活化能與濃度計算,欲使用氮化銦氣體感測器進行呼氣檢測需克服干擾氣體丙酮的影響。為了實踐攜帶式肝病呼氣感測裝置,需要達到選擇性,而使用矽油作為前處理的系統,並探討矽油黏度與官能基對於去除干擾源和保留主要訊號的影響。氯矽烷聚合會使矽油具不同種官能基以及不同黏度,矽油黏度會貢獻流動中的阻力,影響液相質傳系數,導致前處理過程中的氣液相交接面形成不同的互動模式,黏度較大會降低氣體分子於溶液中能接觸溶劑分子數目,而降低吸附效果。為了提升丙酮吸附效果,要提升丙酮對矽油的溶解率,溶劑化現象是否能夠發生取決於分子間力以及氫鍵的形成,由於丙酮氫鍵受體強,需要選擇氫鍵施體能力強的官能基才能有效吸附丙酮。由此本篇研究結果,使用低黏度之羥基矽油可有
    效降低丙酮干擾。


    The advantages of gas detection technology is short time detection and process simple. There is a trend to use gas detection to diagnose. For chronic disease, the gas detection diagnosis is promising to achieve long-term and home care. Especially for liver disease, which is top-ten-causes death in Taiwan. The reason is liver hard to be diagnosed which is inconvenient for the patient. Some researches indicate the specific gas in human exhaled breath behave the condition of organ. Therefore, gas detection used on liver diagnosis is promising candidate. The species in human breath is complex which the sensor need to face the selectivity issue. Based on the sensor and gas activation energy research, the main interference for the InN sensor is acetone. In the research, try to use silicone oil as pretreatment to reduce the influence of acetone and investigate the viscosity and functional groups of silicone oil how to relate the absorption efficiency. Silicone oil is formed by polymerization of siloxane. According to the degree of polymerization, the viscosity would be different and contribute the flow resistance to influence the mass transfer coefficient in liquid-gas phase and flow motions. The higher viscosity would lower the molecular number that gas traveled in liquid phase so that the absorption rate would decrease. To enhance the acetone-absorption rate, the solvation need to form easily. Solvation is depend on intermolecular force and hydrogen bonding. Acetone own higher hydrogen bonding accepter ability so that the silicone oil should own hydroxyl group as match. So the low viscosity and hydroxyl silicone oil is most effective to reduce the influence of acetone.

    誌謝................................................................................................................................. I Abstract .......................................................................................................................... II 中文摘要....................................................................................................................... III 目錄...............................................................................................................................IV 圖目錄..........................................................................................................................VII 表目錄............................................................................................................................ X 符號表........................................................................................................................... XI 第一章 序論................................................................................................................ 1 1.1 研究背景.......................................................................................................... 1 1.2 氣體檢測 ......................................................................................................... 2 1.3 肝臟疾病概述................................................................................................. 3 1.3 肝臟疾病的診斷............................................................................................. 5 1.3.1 肝功能檢測(Liver Tests) ................................................................. 5 1.3.2 肝臟活檢(Liver Biopsy) .................................................................. 6 1.3.3 影像學診斷技術 ................................................................................. 7 1.4 氣體感測器................................................................................................... 10 1.5 研究動機及目標............................................................................................ 11 第二章 文獻回顧........................................................................................................ 12 2.1 前處理方法................................................................................................... 12 2.2 氨與丙酮的基本物理化學特性................................................................... 14 2.3 系統模式探討............................................................................................... 19 2.3.1 矽油性質與製備................................................................................ 26 2.3.2 矽油之官能基簡介............................................................................. 27 第三章 實驗方法........................................................................................................ 29 3.1 儀器設備........................................................................................................ 29 3.1.1 氣體供應系統.................................................................................... 29 3.1.2 氣相層析質譜儀................................................................................ 30 3.1.3 實驗器材與藥品 ............................................................................. 30 3.2 實驗設置....................................................................................................... 33 3.3 量測方法........................................................................................................ 34 3.4 實驗參數統計與量化................................................................................... 35 第四章 結果與討論.................................................................................................... 37 4.1 檢測參數調整及實驗模型............................................................................ 37 4.2 矽油黏度探討............................................................................................... 39 4.3 矽油官能基探討........................................................................................... 43 4.4 測試羥基矽油於各濃度吸附效果............................................................... 45 4.4 整合前處理與氣體感測器檢測................................................................... 56 4.4.1 混合氣體測試..................................................................................... 58 第五章 結論................................................................................................................ 63 第六章 未來方向........................................................................................................ 66 參考文獻...................................................................................................................... 67

    [1] Hirokazu Takahashi, " Liver Biopsy," InTech, 25 (2011).
    [2] A J1, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz
    T, "Extraction and GC/MS analysis of the human blood plasma metabolome," Anal
    Chem 77(24), 8086-94 (2005).
    [3] Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne EA, Barnes
    PJ, "Increased nitric oxide in exhaled air of asthmatic patients," Lancet 343(8890),
    133-5 (1994).
    [4] M Moshkowitz, F M Konikoff, Y Peled, M Santo, A Hallak, Y Bujanover, E
    Tiomny, and T Gilat, "High Helicobacter pylori numbers are associated with low
    eradication rate after triple therapy," Gut 36(6), 845–847 (1995).
    [5] Mieth M, Schubert JK, Gröger T, Sabel B, Kischkel S, Fuchs P, Hein D,
    Zimmermann R, Miekisch W, "Automated needle trap heart-cut GC/MS and needle
    trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the
    clinical environment," Anal Chem 82(6), 2541-51 (2010).
    [6] H. C. Hao, M. C. Chiang, S.C.Liu, C. Y. Hsiao, C. M. Yang, K. T. Tang, et al.,
    "Improved Surface Acoustic Wave Sensor For Low Concentration Ammonia/Methane
    Mixture Gases," Miniaturized Systems for Chemistry and Life Sciences, 2014.
    [7] Sandra Van den Velde, Frederik Nevens, Paul Van hee, Daniel van Steenberghe,
    Marc Quirynen, "GC–MS analysis of breath odor compounds in liver patients,"
    Journal of Chromatography B 875, 344–348 (2008).
    [8] D.S. Lee, J.H. Lee, Y.H. Lee, D.D. Lee “GaN thin films as gas sensors,” Sensors
    and Actuators B 6989, 1–6 ( 2003).
    [9] Y.-S. Lu, C.-L. Ho, J.A. Yeh, H.-W. Lin, S. Gwo,” Anion detection using ultrathin
    InN ion selective field effect transistors,” Appl. Phys. Lett 92, 212102:1–212102:3
    (2008).
    [10] L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, "Quantitative Analysis of
    Urine Vapor and Breath by Gas-Liquid Partition Chromatography," Proceedings of
    the National Academy of Sciences of the United States of America, vol. 68, pp.
    2374-2376, 1971.
    [11] H. C. Hao, M. C. Chiang, S.C.Liu, C. Y. Hsiao, C. M. Yang, K. T. Tang, et al.,
    "Improved Surface Acoustic Wave Sensor For Low Concentration Ammonia/Methane
    Mixture Gases," Miniaturized Systems for Chemistry and Life Sciences, 2014.
    [12] S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, "Breath Biomarkers for
    Detection of Human Liver Diseases: Preliminary Study," Biomarkers, vol. 7, pp.
    174-187, 2002.
    [13] B. Buszewski and T. L. J. Rudnicka, "Clinical Application of SPME: Analysis of
    VOCs in Exhaled Breath as Cancer Biomarkers," Reporter, vol. 53, pp. 17-18, 2013.
    [14] P. Mayes, R. Murray, D. Granner, and V. Rodwell, "Harper's Illustrated
    Biochemistry," Biologic Oxidation. McGraw‐Hill Companies Inc., pp. 130-136, 2000.
    [15] C. H. Deng, J. Zhang, X. F. Yu, W. Zhang, and X. M. Zhang, "Determination of
    Acetone in Human Breath by Gas Chromatography-Mass Spectrometry and
    Solid-Phase Microextraction with on-fiber Derivatization," Journal of
    Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol.
    810, pp. 269-275, 2004.
    [16] S. Clay, E. Hainline, "Hyperammonemia in the ICU", Chest, 2007.
    [17] L. G. Wade, "Organic Chemistry (6 th Edition) ", Prentice Hall, 2005.
    [18] M. Barker, M. Hengst, J. Schmid, H-J. Buers, B. Mittermaier,D. Klemp and R.
    Koppmann, "Volatile organic compounds in the exhaled breath of young patients with
    cystic fibrosis", European Respiratory Journal, 2006.
    [19] B. Moser, F. Bodrogi, G. Eibl, M.Lechner, J. Rieder, P.Lirk, "Mass spectrometric
    profile of exhaled breath—field study by PTR-MS", Respiratory Physiology &
    Neurobiology, 2005.
    [20] B. Buszewski, M. Kesy, T. Ligorand, A. Amann, “Human exhaled air analytics:
    biomarkers of diseases,” Biomedical Chromatography, 2007.
    [21] B.H. Timmera, K.M. van Delft, R.P. Otjes , W. Olthuis, A. van den Berg,
    "Miniaturized measurement system for ammonia in air", Analytica Chimica Acta,
    2004.
    [22] S. Pandey, G.K. Goswami and K. K. Nanda, "Nanocomposite based flexible
    ultrasensitive resistive gas sensor for chemical reactions studies", Scientific Reports,
    2013.
    [23] T. Mitsudom, “Oxidant-free alcohol dehydrogenation using a reusable
    hydrotalcite-supported silver nanoparticle catalyst,” Angewandte Chemie
    International Edition, 2008.
    [24] M. Besson , P. Gallezot, “Selective oxidation of alcohols and aldehydes on metal
    catalysts,” Catalysis Today, 2000.
    [25] J. H. Kluytmans, A. P. Markusse, B. F. M.Kuster, G. B. Marin, J. C. Schouten,
    “Engineering aspects of the aqueous noble metal catalysed alcohol oxidation,”
    Catalysis Today, 2000.
    [26] G. K. Mani, J. Bosco, B. Rayappan, "A highly selective room temperature
    ammonia sensor using spray deposited zinc oxide thin film", Sensors and Actuators B,
    2013.
    [27] M. Barker, M. Hengst, J. Schmid, H-J. Buers, B. Mittermaier,D. Klemp and R.
    Koppmann, "Volatile organic compounds in the exhaled breath of young patients with
    cystic fibrosis", European Respiratory Journal, 2006.
    [28] Francesca Kerton, Alternative Solvents for Green Chemistry, 2009, 2 IUPAC. Compendium of Chemical Terminology, 2nd ed.
    [29] D. J. Adams, P. J. Dyson and S. J. Taverner, Chemistry in Alternative Reaction
    Media, John Wiley & Sons Ltd, Chichester, 2004.
    [30] J. H. Clark and S. J. Tavener, Org. Process Res. Dev., 2007, 11, 149.
    [31] E. Näsström, et al “Salmonella Typhi and Salmonella Paratyphi A elaborate
    distinct systemic metabolite signatures during enteric fever’’, eLife 2014
    [32] Milton S. Plesset, “Effect of dissolved gases on cavitation in liquids”, National
    technical information service, 1970
    [33] P.M. Wilkinson, H. Haringa, L.L.V. Dierendonck, "Mass transfer and bubble
    size in a bubble column under pressure", Chem. Eng. Sci. 49 (9) (1994) 1417–1427.
    [34] Tarun K. Poddar, “ Removal of VOCs from Air by Absorption and Stripping in
    Hollow Fiber Devices”, 1995
    [35] 鄭智仁,氮化銦感測器對肝病氣體及干擾氣體影響之研究,2014。
    [36] R. Bartnikas, "Engineering Dielectrics Volume III: Electrical Insulating Liquids",
    ASTM International, 1994.
    [37] 楊富翔,以五環素與白金提升氮化銦對氨氣選擇性,2013。
    [38] 陳鴻震,改善吹氣捕捉系統搭配離子層析儀量測高鹽度樣品中的銨離子,
    2007。
    [39] K. W. Kao, ‘‘Rapid Gas Detection System of Sub-ppm Ammonia Based on
    Ultrathin InN Epilayer for Diagnosing Liver Disease’’, 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE