簡易檢索 / 詳目顯示

研究生: 唐宇軒
Tang, Yu-Hsuan
論文名稱: 製備可圖紋化石墨烯/水溶性光阻奈米複材於微感測器應用之研究
Preparing Photopatternable Nanocomposites of Graphene/Water-Soluble Photoresist for Multifunctional Microsensor Application
指導教授: 劉大佼
口試委員: 李育德
張勝
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 石墨烯水溶性負光阻微感測器
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物感測器尺寸微小化為現今發展之趨勢,尺度微小化能有效縮減體積而方便攜帶,且能於同一區塊製造多種不同感測功能之區間,其製造過程需仰賴微影製程(photolithography process)技術。傳統之微影技術乃利用具有光敏感性之光阻劑(photoresist)塗佈於基材,以具圖紋之光罩使光線經曝光後轉移至光阻劑上,經顯影並蝕刻後去除光阻即可得所需之圖紋。
    本研究欲將石墨烯與製程環保之水溶性光阻混摻製作複合材,製備過程利用分散劑使石墨烯於光阻內達到良好之分散,使4 wt%之添加量達到良好的材料導電度,而具電化學感測之應用性。經複合材固化動力學研究發現複材轉化率受石墨烯添加之遮光效應(shield effect)及立體障礙(Steric hindrance)會略微下降。但利用增長曝光時間即可達到顯影時所需之強度,未轉化完之光阻則可利用製程中之硬烤使其雙鍵完全消除。顯像測試顯示複材具有良好之顯像能力。將顯影後具圖紋之微感應進行銅微粒之表面修飾,用作葡萄糖氧化觸媒。經電化學測試後,可觀察到葡萄糖氧化電流與濃度具線性關係;此外,未經表面修飾之複材,經實驗結果證明亦具有鉛之感測能力。由本研究成功以低添加量之石墨烯/水溶性光阻複合材料,可省去蝕刻製程,製作出可圖紋之感應器,同時具有血糖及血鉛測量之應用性。


    第 1 章 緒論 1 1-1 研究之背景與目的 1 1-2 研究之重要性 5 第 2 章 文獻回顧 6 2-1 自由基聚合(free radical polymerization) 6 2-1-1 自由基反應機制 6 2-1-2 自由基反應之複雜化因素 8 2-2 微影技術 10 2-2-1光阻的簡介 13 2-2-2 負型光阻的組成 15 2-2-3 具有羧基及不飽和雙鍵之光可聚合性聚合物 16 2-2-4光啟始劑(photoinitiator) 17 2-2-4-1 第一類型的單分子型光啟始劑[5] 18 2-2-4-2 第二類型的雙分子型光啟始劑[6,7] 19 2-2-5光聚合性單體(photopolymerizable monomer) 20 2-3 紫外光固化技術 23 2-4石墨烯(graphene) 27 2-4-1 以混摻法製備石墨烯複合材料 29 2-4-2 以共價鍵結法製備石墨烯複合材料 36 2-5分散劑[44] 41 2-6微感應器 43 2-6-1 生物感測器 43 2-6-2 石墨烯感測器發展[50] 46 2-6-3 微型感測器 47 第 3 章 實驗藥品、設備及方法 48 3-1 研究方法 48 3-1-1 實驗藥品 49 3-1-2實驗設備 49 3-2熱還原法製備石墨烯 50 3-3以微影程序製作複合材料 51 3-3-1混料 51 3-3-2塗佈 52 3-3-3曝前烤 52 3-3-4曝光 52 3-3-5顯影 52 3-3-6硬烤 52 3-4以銅微粒進行複合材微感測器表面修飾 52 3-5 結構鑑定與分析 53 3-5-1 X光繞射圖光譜 53 3-6-2紅外光譜分析 53 3-6-3 熱重分析儀 53 3-6-4熱示差掃描分析儀 54 3-6-5形態學觀察分析( SEM、TEM) 54 3-6-6四點探針 54 3-6-7紫外光可見光吸收光譜 55 3-6-8循環伏安儀 55 第 4 章 結果與討論 56 4-1 TRG之結構鑑定 56 4-2石墨烯於複合材中之分散 58 4-2-1分散劑之濃度效應 59 4-2-2懸浮測試 61 4-2-3分散對熱穩定性之影響 63 4-3 複合材料固化動力學研究 65 4-3-1以 FTIR計算轉化率 65 4-3-2以 DSC計算固化活化能 70 4-4導電度分析 73 4-4-1分散性對導電度之影響 74 4-4-2 UV光固化前後之導電度 76 4-5微影製程 78 4-5-1 特性曲線(characteristic curve) 78 4-5-2 顯像分析 80 4-5-3 硬烤(hard bake) 83 4-6電化學分析 85 4-6-1以未經表面修飾之PUA/TRG-4%作葡萄糖微感應器 86 4-6-2以銅微粒修飾之PUA/TRG-4%作葡萄糖微感應器 90 4-6-3鉛微感測器 95 第 5 章 結論 98 第 6 章 參考文獻 102  

    1. Lin, Q.; Steinhausler, T.; Simpson, L.; Wilder, M.; Medeiros, D. R.;Willson, C. G. Chem. Master. 1997, 9, 1725-1730
    2. C. Decker, Acta Polym., 1994, 45, 333-347.
    3. 張勝, 國立清華大學化學工程系, 2013, 博士論文.
    4. O. G., Principles of Polymerization, John Wiley &Sons Inc., New York, 1991.
    5. A. N.S., J. M.S., O. P.K.T. and S. S., in INKS &PAINTS, SITA Technology, London, England, 1991.
    6. N. S. Allen, J. Photochem. Photobiol. A-Chem., 1996, 100, 101-107.
    7. J. Segurola, N. Allen, M. Edge, A. Parrondo and I. Roberts, J. Photochem. Photobiol. A-Chem., 1999, 122, 115-125.
    8. Young, L.C., Material in Printing Process. New York: Hastings House, 1973.
    9. Decker, C. Pigm. Resin. Technol. 2001, 30, 278
    10. He, D.M., Susanto, H.R., Ulbricht, M.T. Prog. Polym. Sci. 2009, 34, 62.
    11. Koleske, J.V., Radiation curing of coatings. Pennsylvania: ASTM international, 2002.
    12. 彭志成,紫外光可硬化之聚胺酯。國立臺灣大學化學工程研究所碩士論文,1998。
    13. Singh, B., Bouchet, J., Rochat, G., Leterrier, Y., Manson, J.-A.E., Surf. Coat. Technol. 2007, 201, 7107.
    14. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature, 2007, 448, 457-460.
    15. S. Ghosh, S. Subrina, V. Goyal, D. L. Nika, E. P. Pokatilov, A. A. Balandin and Ieee, in 2010 12th Ieee Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Ieee, New York, 2010.
    16. M. S. Fuhrer, C. N. Lau and A. H. MacDonald, Mrs Bulletin, 2010, 35, 289-295.
    17. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang and H. J. Dai, Nature Nanotechnology, 2008, 3, 538-542.
    18. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard and K. Kern, Nano Letters, 2007, 7, 3499-3503.
    19. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Letters, 2009, 9, 30-35.
    20. J. Campos-Delgado, J. M. Romo-Herrera, X. T. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. F. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus and M. Terrones, Nano Letters, 2008, 8, 2773-2778.
    21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
    22. D. C. Luo, G. X. Zhang, J. F. Liu and X. M. Sun, Journal of Physical Chemistry C, 2011, 115, 11327-11335.
    23. W. F. Chen, L. F. Yan and P. R. Bangal, Carbon, 2010, 48, 1146-1152.
    24. G. Williams, B. Seger and P. V. Kamat, Acs Nano, 2008, 2, 1487-1491.
    25. K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar and P. V. Kamat, Journal of Physical Chemistry Letters, 2010, 1, 1987-1993.
    26. M. Baraket, S. G. Walton, Z. Wei, E. H. Lock, J. T. Robinson and P. Sheehan, Carbon, 2010, 48, 3382-3390.
    27. E. C. Salas, Z. Z. Sun, A. Luttge and J. M. Tour, Acs Nano, 2010, 4, 4852-4856.
    28. Y. Wang, Z. X. Shi and J. Yin, Acs Applied Materials & Interfaces, 2011, 3, 1127-1133.
    29. T. N. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J. W. Feng and Q. A. Fu, Nanotechnology, 2011, 22.
    30. J. F. Che, L. Y. Shen and Y. H. Xiao, Journal of Materials Chemistry, 2010, 20, 1722-1727.
    31. M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tascon, Journal of Physical Chemistry C, 2010, 114, 6426-6432.
    32. C. Z. Zhu, S. J. Guo, Y. X. Fang and S. J. Dong, Acs Nano, 2010, 4, 2429-2437.
    33. J. B. Liu, S. H. Fu, B. Yuan, Y. L. Li and Z. X. Deng, Journal of the American Chemical Society, 2010, 132, 7279-+.
    34. Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. M. Ren, L. P. Song and F. Wei, Acs Nano, 2011, 5, 191-198.
    35. Z. J. Fan, K. Wang, T. Wei, J. Yan, L. P. Song and B. Shao, Carbon, 2010, 48, 1686-1689.
    36. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 2006, 442, 282-286.
    37. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, F. M. Cai, C. D. Zhang, H. J. Gao and Y. S. Chen, Carbon, 2009, 47, 922-925.
    38. S. Ansari and E. P. Giannelis, Journal of Polymer Science Part B-Polymer Physics, 2009, 47, 888-897.
    39. W. S. Hummers and R. E. Offeman, Journal of the American Chemical Society, 1958, 80, 1339-1339.
    40. X. M. Yang, L. A. Li, S. M. Shang and X. M. Tao, Polymer, 2010, 51, 3431-3435.
    41. T. Zhou, F. Chen, C. Tang, H. Bai, Q. Zhang, H. Deng and Q. Fu, Compos. Sci. Technol., 2011, 71, 1266-1270.
    42. H. T. Hu, X. B. Wang, J. C. Wang, L. Wan, F. M. Liu, H. Zheng, R. Chen and C. H. Xu, Chemical Physics Letters, 2010, 484, 247-253.
    43. R. C. Feng, G. H. Guan, W. Zhou, C. C. Li, D. Zhang and Y. N. Xiao, Journal of Materials Chemistry, 2011, 21, 3931-3939.
    44. 唐黎明, 庹新林, 清華大學出版社, 2009
    45. D. Chen, L. Tang and J. Li, Chem. Sco. Rev. ,2010, 39,3157-3180
    46. R. Levi, S. A. Pilesky, E. V. Piletskaya, T. L. Panasyuk, I. Karube and G. Wulff, Macromolecules, 1998, 31, 2173
    47. D. Kriz, O. Ramstrom, A. Svensson and K. Mosbach, Anal. Chem. , 1995, 67,2142
    48. S. A. Pilesky, E. V. Piletskaya, A. V. Elgersma, K. Yano, and I. Karube, Biosens. Bioelectron., 1995, 10,959
    49. C. Malitesta, I. Losito and P. G. Zambonin, Anal. Chem. Acta, 1995, 300, 71
    50. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose and J. H. Lee, Progress in Polymer Science, 2010, 35, 1350-1375
    51. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, Nature, 2007, 446, 60-63.
    52. N.W. Pu, C.A. Wang, Y.M. Lui,Y. Sung, D.S. Wang and M.D. Ger, Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 140-146
    53. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose and J. H. Lee, Progress in Polymer Science, 2010, 35, 1350-1375
    54. M. Lotya, P.J. King, U. Khan, S. De, J. N. Colemen, ACS Nano,2010,4, 3155-3162
    55. D. Ana, F. Aurora, G. Neimi, I. Emilia and M. Luis, J. Chem. Edu., 1997, 74, 1227
    56. J. H. Yang, S. H. Lin and Y. D. Lee, J. Mater. Chem.,2012, 22 10805
    57. F. M. Uhl, S. P. Davuluri, S. C. Wong and D. C. Webster, Polymer, 2004, 45, 6175-6187
    58. C. Decker, Macromol. Rapid Commun., 2002, 23, 1067-1093
    59. K. Kruger, K. Tauer, Y. Yagci and N. Moszner, Macromolecules, 2011, 44, 9539-9549.
    60. Huang, J.K., Niu, D.J., Sun, J.Y., Han, C.H., Wu, Z.W., Li, Y.L., Xiong, X.Q., 2011. Colloid
    Surface B 82, 543–549.
    61. M. M. Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer, 2011, 52, 4664-4669
    62. J. Oui and S. Wang, Material Chemistry and Physics, 2010, 121, 295-301
    63. J. Bae, J. Jang and S. H. Yoon, Macromol. Chem. Phys., 2002, 203, 2196-2204
    64. Z. Wei, A. Abbas, D. Saniji and S. Richard, J. Mater. Sci, 2007, 42, 3408- 3418
    65. J. Luo, S. Jiang, H. Zhang, J. Jiang and X. Lui, Analytica. Chemica. Acta., 2012,709, 47-53
    66.H. X. Wu, W. M. Cao, Y. Li, G. Lui, Y. Wen, H. F. Yang and S. P. Yang, Electrochemica Acta, 2010, 55, 3734- 3740
    67. J. Li, S. Guo, Y. Zhai and E. Wang, Analytica. Chemica. Acta., 2009, 649, 196- 201
    68. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang and P. Chen, ACS Appl. Mater. Interface, 2012, 4, 3129- 3133
    69. Diabates.co.uk http://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html
    70. Centers for Desease Control and Prevention http://www.cdc.gov/nceh/lead/ACCLPP/blood_lead_levels.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE