研究生: |
如 是 Iram Siddiqui |
---|---|
論文名稱: |
濕式製作高效率藍光有機發光二極體 High Efficiency Blue OLEDs via Wet Process |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
魏茂國
Wei, Mao-Kuo 董福慶 Tung, Fu-Ching 石陞旭 Shih, Sheng-Hsu 岑尚仁 Chen, Sun-Zen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 222 |
中文關鍵詞: | 有機發光二極管 、藍色有機發光二極管 |
外文關鍵詞: | Organic Light Emitting Diode (OLED), Blue OLEDs, Blue Emitters, Deep-blue Emitters, Deep-blue OLEDs |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體 (OLED) 在智能手機、智能手錶、平板電腦、電視等領域的表現優於其他傳統的顯示技術,同時逐漸蓬勃發展,覆蓋了固態照明行業的相當大一部分;他的固有特性,如可撓性、透明、完全的明暗可調、人體友善、寬視角、極致高對比、應答快、節能等,促使科學家和工程師付出巨大努力,進一步提高效率和穩定性,儘管已有商業化產品問世。
藍色發光是實現高質量紅、綠、藍、黃 (RGBY) 和 RGB 白色顯示技術和固態照明光源的關鍵。在已報導的幾種藍色發光體中,咔唑基發光體由於其能隙大、π-供體較弱、穩定性高、電洞遷移率好、結構可調性好、合成步驟簡便等優點而廣為人知。此外,在發光體中摻入咔唑是實現更深藍色發光的最佳方式。
此外,OLED 可以通過濕式或乾式製程技術製造。其中,濕式製程技術由於其易於成層、可卷對卷製造、材料消耗少等優點,實現了OLED低成本量產的目標。
本論文的首要目標是開發可濕式製作的高效率藍色發光體,用於製造具有簡單元件結構的高效率OLED,用於顯示和照明應用。目標有:(i) 咔唑-二苯甲酮基扭曲 D-A 衍生物作為 OLED 的藍色發光體,(ii) 咔唑-二苯甲酮基扭曲 D-A-D 衍生物作為 OLED 的藍色發光體,(iii) 咔唑-砜基扭曲 D-A 和 D-A-D 衍生物作為 OLED 的藍色發光體,以及 (iv) 萘和芳基改性鋅絡合物作為高性能 OLED 的藍色發光體。
為了實現第一個目標,咔唑供體與供體-受體 (D-A) 型分子中的二苯甲酮受體單元組成。設計了一系列具有寬能隙和高玻璃轉化溫度(Tg≥95℃)的烷基改性材料。基於烷基側鏈改性的咔唑和二苯甲酮衍生物的元件,表現出了更好的性能,CEmax 為 5.7 cd/A,EQEmax 為 2.7%,CIEy 為 0.24,發出綠藍色光。
繼續先前的觀察,對於第二個目標,兩個咔唑供體部分連接在供體-受體-供體 (D-A-D) 型分子中二苯甲酮受體部分的兩端。使用烷基鏈修飾設計了多種 D-A-D 型分子。 所得烷基側鏈改性咔唑和二苯甲酮基於 D-A-D 的元件顯示出比基於 D-A 更好的性能,在 CIEy 為 0.22 時顯示出 2.6 cd/A 的 CEmax 和 5.3% 的 EQEmax 為綠藍色發射。
在進一步的研究中,二苯甲酮部分被更強的受體砜部分取代,因此開發了烷基鏈改性的 D-A 和 D-A-D 型材料。結果與之前的觀察結果相似,其中,烷基長鏈改性咔唑和砜 D-A-D 有最佳的元件表現,CEmax 為 2.5 cd/A,EQEmax 為 4.0%,在 CIEy 為 0.09,遵循國家電視系統委員會 (NTSC) 色彩標準。有趣的是,砜部分顯示出比二苯甲酮部分低的藍移。
在研究的最後,鋅基分子是使用萘基和芳基改性開發的。由於萘體積大,所以更穩定,與對應的芳基苯環相比,往往會減慢分子旋轉。因此,萘改性的鋅基元件有更好的表現,在 NTSC 色彩標準的 CIEy 0.09 下,深藍光元件的CEmax 為 0.9 cd/A,EQEmax 為 3.2%。
Organic light-emitting diodes (OLEDs) have outperformed other conventional display technologies in smartphones, smartwatches, tablets, televisions, etc., while gradually thriving to cover a sizable fraction of the solid-state lighting industry. Its intrinsic features like flexible, transparent, fully dimmable, human-friendly, wide viewing angle, ultimate high-contrast, fast response time, energy-saving, and many more, have impelled scientists and engineers to dedicate tremendous efforts to further enhancing efficiency and stability despite several commercialized products.
Blue emission is a crucial chromatic component for realizing the high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. Among several reported blue emitters, carbazole-based emitters are well known due to their large bandgap, weaker 𝜋-donating ability, high stability, good hole mobility, easy structural tunability, and facile synthesis route. Moreover, incorporating carbazole in an emitter is the best way to achieve a deeper-blue emission.
Furthermore, OLEDs can be fabricated via wet or dry-processed fabrication techniques. Amongst, the wet-processed technique is comparatively better owing to its easy layer deposition, roll-to-roll fabrication, and less material consumption, accomplishing the objective of low-cost mass-production of OLEDs.
The foremost objective of this thesis was to develop wet-process feasible efficient blue emitters for fabricating high-efficiency OLEDs with a simple device structure for display and lighting applications. The objectives are: (i) carbazole-benzophenone-based twisted D-A derivatives as blue emitters for OLEDs, (ii) carbazole-benzophenone based twisted D-A-D derivatives as blue emitters for OLEDs, (iii) carbazole-sulfone based twisted D-A and D-A-D derivatives as a blue emitter for OLEDs, and (iv) naphthalene and aryl modified zinc complex as blue emitters for high-performance OLEDs.
To accomplish the first objective, a carbazole donor was grouped with benzophenone acceptor units in donor-acceptor (D-A) type molecules. A series of alkyl-modified materials with a wide bandgap and a high glass transition temperature (Tg ≥ 95℃) were designed. The alkyl sidechain modified carbazole and benzophenone derivative-based device displayed a better performance with a CEmax of 5.7 cd/A, EQEmax of 2.7% for a greenish-blue emission at a CIEy of 0.24.
In continuation with the prior observation, for the second objective, two carbazole donor moieties were attached at both the ends of benzophenone acceptor moieties in a donor-acceptor-donor (D-A-D) type molecule. A variety of D-A-D type molecules were designed using alkyl chain modification. The resultant alkyl sidechain modified carbazole and benzophenone D-A-D based device displayed a better performance than D-A based, showing a CEmax of 2.6 cd/A, EQEmax of 5.3% for a greenish-blue emission at a CIEy of 0.22.
In further studies, the benzophenone moieties were replaced by stronger acceptor sulphone moieties, and therefore, alkyl chain modified D-A and D-A-D type materials were developed. The results were similar to the prior observation, wherein, the alkyl long-chain modified carbazole and sulfone D-A-D based device displayed the best performance with a CEmax of 2.5 cd/A, EQEmax of 4.0% for a deep-blue emission at a CIEy of 0.09 following the National Television System Committee (NTSC) color standard. Interestingly, the sulfone moieties show a hypsochromic shift than the benzophenone moieties.
In the final studies, the zinc-based molecules were developed using naphthalene- and aryl-based modifications. Naphthalene being bulky and hence more stable tends to slow the molecule rotation than the counterpart aryl phenyl ring. Therefore, naphthalene modified zinc-based device displayed a better performance with a CEmax of 0.9 cd/A, EQEmax of 3.2% for a deep-blue emission at a CIEy of 0.09 following the NTSC color standard.
[1] S. Nakamura, “Shuji Nakamura - Nobel Lecture: Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes,” 2014.
[2] “Blue LEDs-Filling the world with new light.”
[3] “Nobel Prize ® and the Nobel Prize ® medal design mark are registrated trademarks of the Nobel Foundation,” 2014.
[4] S. Sudheendran Swayamprabha et al., “Approaches for Long Lifetime Organic Light Emitting Diodes,” Advanced Science, vol. 8, no. 1, Jan. 2021, doi: 10.1002/ADVS.202002254.
[5] J.-H. Jou, Introduction to OLED. Taiwan: Gau Lih Book 10, Ltd., 2015.
[6] Shahnawaz et al., “Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature,” Molecules 2021, Vol. 26, Page 7558, vol. 26, no. 24, p. 7558, Dec. 2021, doi: 10.3390/MOLECULES26247558.
[7] V. M. Korshunov et al., “A novel candle light-style OLED with a record low colour temperature,” Chemical Communications, vol. 55, no. 89, pp. 13354–13357, Nov. 2019, doi: 10.1039/C9CC04973H.
[8] J.-H. Jou et al., “Enabling a blue-hazard free general lighting based on candle light-style OLED,” Optics Express, vol. 23, no. 11, p. A576, Jun. 2015, doi: 10.1364/OE.23.00A576.
[9] J. H. Jou, M. Singh, Y. T. Su, S. H. Liu, and Z. K. He, “Blue-hazard-free Candlelight OLED,” Journal of Visualized Experiments : JoVE, vol. 2017, no. 121, Mar. 2017, doi: 10.3791/54644.
[10] J. H. Jou et al., “Candle Light-Style Organic Light-Emitting Diodes,” Advanced Functional Materials, vol. 23, no. 21, pp. 2750–2757, Jun. 2013, doi: 10.1002/ADFM.201203209.
[11] C. Murawski, K. Leo, and M. C. Gather, “Efficiency roll-off in organic light-emitting diodes,” Advanced Materials, vol. 25, no. 47, pp. 6801–6827, Dec. 2013, doi: 10.1002/ADMA.201301603.
[12] X. Liu et al., “Deep-blue fluorescent emitter based on a 9,9-dioctylfluorene bridge with a hybridized local and charge-transfer excited state for organic light-emitting devices with EQE exceeding 8%,” pp. 14117–14124, 2020, doi: 10.1039/d0tc02941f.
[13] Z. Wu and D. Ma, “Recent advances in white organic light-emitting diodes,” Materials Science and Engineering: R: Reports, vol. 107, pp. 1–42, Sep. 2016, doi: 10.1016/J.MSER.2016.06.001.
[14] J. H. Kim et al., “Blue Phosphorescence with High Quantum Efficiency Engaging the Trifluoromethylsulfonyl Group to Iridium Phenylpyridine Complexes,” Inorganic Chemistry, vol. 58, no. 23, pp. 16112–16125, Dec. 2019, doi: 10.1021/ACS.INORGCHEM.9B02672/SUPPL_FILE/IC9B02672_SI_001.PDF.
[15] M. Singh et al., “High light-quality OLEDs with a wet-processed single emissive layer,” Scientific Reports 2018 8:1, vol. 8, no. 1, pp. 1–9, May 2018, doi: 10.1038/s41598-018-24125-4.
[16] “Homepage - Universal Display Corporation.” https://oled.com/ (accessed Jul. 01, 2022).
[17] “OLED & PLED Materials.” https://www.sigmaaldrich.com/TW/en/products/materials-science/electronic-materials/oled-and-pled-materials (accessed Jul. 01, 2022).
[18] “Organic Light Emitting Diode(OLED) - Shine Materials Technology Co.,Ltd.” https://www.shinematerials.com/goods1-cat1-lang1.html (accessed Jul. 01, 2022).
[19] “OLED Displays and Their Applications | Learning Corner for Beginners.” https://www.electronicsforu.com/resources/oled-displays-applications (accessed May 02, 2022).
[20] “Sony OLED | OLED-Info.” https://www.oled-info.com/sony-oled (accessed May 02, 2022).
[21] Y. H. Y. Zhu, L. Guo, Y. Lee, X. Xu, J. Xie, G. Zhang, “No Title,” SID Symp. Dig. Tech. Pap, pp. 628–631, 2019.
[22] H. Lueder, J. Buhl, and M. Gerken, “Effect of localized current distributions in periodically nanostructured OLEDs on the resonant light outcoupling,” https://doi.org/10.1117/12.2606225, vol. 11995, pp. 69–77, Mar. 2022, doi: 10.1117/12.2606225.
[23] J.-H. Jou et al., “Candle light‐style organic light‐emitting diodes,” Wiley Online Library, vol. 23, no. 21, pp. 2750–2757, Jun. 2013, doi: 10.1002/adfm.201203209.
[24] M. S. D. Free, S. Now, “No Title,” p. 2019, 2020.
[25] “The Korean Government may give new tax benefits to encourage further OLED investments | OLED-Info.” https://www.oled-info.com/korean-government-may-give-new-tax-benefits-encourage-further-oled-investments (accessed Jun. 30, 2022).
[26] “No Title.”
[27] X. Lv et al., “Highly efficient non-doped blue fluorescent OLEDs with low efficiency roll-off based on hybridized local and charge transfer excited state emitters,” Chemical Science, vol. 11, no. 19, pp. 5058–5065, May 2020, doi: 10.1039/D0SC01341B.
[28] H. Yang et al., “High colour rendering index white organic light-emitting devices with three emitting layers,” Displays, vol. 29, no. 4, pp. 327–332, Oct. 2008, doi: 10.1016/J.DISPLA.2007.10.001.
[29] J. H. Jou et al., “High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer,” Journal of Materials Chemistry, vol. 21, no. 46, pp. 18523–18526, Nov. 2011, doi: 10.1039/C1JM13975D.
[30] J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, and C. Adachi, “Oxadiazole - and triazole -based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 30, pp. 4599–4604, Jul. 2013, doi: 10.1039/C3TC30699B.
[31] W. Li et al., “Employing ∼100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge-Transfer Excited State,” Advanced Functional Materials, vol. 24, no. 11, pp. 1609–1614, Mar. 2014, doi: 10.1002/ADFM.201301750.
[32] E. E. Bas, P. Ulukan, A. Monari, V. Aviyente, and S. Catak, “Photophysical Properties of Benzophenone-Based TADF Emitters in Relation to Their Molecular Structure,” Journal of Physical Chemistry A, vol. 126, no. 4, pp. 473–484, Feb. 2022, doi: 10.1021/ACS.JPCA.1C08320/ASSET/IMAGES/LARGE/JP1C08320_0010.JPEG.
[33] and A. C. I. Roppolo, M. Sangermano, “Optical properties of polymer nanocomposites, Functional and Physical Properties of Polymer Nanocomposites,” John Wiley and Sons Ltd, 2016.
[34] A. J. J. o. C. P. Bernanose, “No Title,” no. 52, pp. 261–263, 1955.
[35] A. B. and P. J. J. d. C. P. Vouaux, “No Title,” no. 50, pp. 261–263, 1953.
[36] H. K. and M. J. N. Pope, “No Title,” no. 186, pp. 31–33, 1960.
[37] H. K. and M. J. T. j. o. c. P. Pope, “No Title,” no. 32, pp. 300–301, 1960.
[38] H. K. and P. J. T. J. o. C. P. M. M. Pope, “No Title,” no. 38, pp. 2042–2043, 1963.
[39] W. Helfrich and W. G. Schneider, “Recombination Radiation in Anthracene Crystals,” Physical Review Letters, vol. 14, no. 7, p. 229, Feb. 1965, doi: 10.1103/PhysRevLett.14.229.
[40] R. J. P. Partridge, “No Title,” no. 24, pp. 755–762, 1983.
[41] C. Tang, S. V.-A. physics letters, and undefined 1987, “Organic electroluminescent diodes,” aip.scitation.org, vol. 51, no. 12, p. 913, 1987, doi: 10.1063/1.98799.
[42] J. H. Jou et al., “Wet-process feasible candlelight OLED,” Journal of Materials Chemistry C, vol. 4, no. 25, pp. 6070–6077, Jun. 2016, doi: 10.1039/c6tc01968d.
[43] M. Kim et al., “Stable Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light-Emitting Diodes,” Advanced Materials, vol. 27, no. 15, pp. 2515–2520, Apr. 2015, doi: 10.1002/ADMA.201500267.
[44] C.-Y. Kuei et al., “Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 31%,” Advanced Materials, vol. 28, no. 14, pp. 2795–2800, Apr. 2016, doi: 10.1002/ADMA.201505790.
[45] J. Lee et al., “Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency,” Nature materials, vol. 15, no. 1, pp. 92–98, Jan. 2016, doi: 10.1038/NMAT4446.
[46] R. P. Xu, Y. Q. Li, and J. X. Tang, “Recent advances in flexible organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 4, no. 39, pp. 9116–9142, Oct. 2016, doi: 10.1039/C6TC03230C.
[47] J. W. Hamer, A. Yamamoto, G. Rajeswaran, and S. A. Van Slyke, “69.4: Invited Paper: Mass Production of Full-Color AMOLED Displays,” SID Symposium Digest of Technical Papers, vol. 36, no. 1, pp. 1902–1907, May 2005, doi: 10.1889/1.2036392.
[48] “Sony XEL-1 OLED TV | OLED-Info.” https://www.oled-info.com/sony-xel-1 (accessed Jun. 30, 2022).
[49] “Sony | OLED-Info.” https://www.oled-info.com/oled_panel_makers/sony (accessed Jun. 30, 2022).
[50] “AUO.” https://www.auo.com/en-global/New_Archive/detail/News_Archive_Technology_190823 (accessed Jun. 30, 2022).
[51] “LG OLED TV 2016 Display Technology Shoot-Out.” https://www.displaymate.com/OLED_TV2016_ShootOut_1.htm (accessed Jun. 30, 2022).
[52] S. Kosai, A. B. Badin, Y. Qiu, K. Matsubae, S. Suh, and E. Yamasue, “Evaluation of resource use in the household lighting sector in Malaysia considering land disturbances through mining activities,” Resources, Conservation and Recycling, vol. 166, p. 105343, Mar. 2021, doi: 10.1016/J.RESCONREC.2020.105343.
[53] Y. Huang, X. Du, S. Tao, X. Yang, and C. Zheng, “High ef fi ciency non-doped deep-blue and fl uorescent / phosphorescent white organic light-emitting diodes based on an anthracene derivative,” Synthetic Metals, vol. 203, pp. 49–53, 2015, doi: 10.1016/j.synthmet.2014.10.019.
[54] “Panasonic Develops World’s Highest Efficiency White OLED for Lighting | Headquarters News | Panasonic Newsroom Global.” https://news.panasonic.com/global/press/data/2013/05/en130524-6/en130524-6.html (accessed Jun. 30, 2022).
[55] K. Kato, T. Iwasaki, and T. Tsujimura, “Over 130 lm/W all-phosphorescent white OLEDs for next-generation lighting,” Journal of Photopolymer Science and Technology, vol. 28, no. 3, pp. 335–340, Oct. 2015, doi: 10.2494/PHOTOPOLYMER.28.335.
[56] “LG Chem’s 320x320 mm OLED lighting panel now in production, company develops new integration solutions | OLED-Info.” https://www.oled-info.com/lg-chems-320x320-mm-oled-lighting-panel-now-production-company-develops-new-integration-solutions (accessed May 17, 2022).
[57] “OLED lighting introduction and market status | OLED-Info.” https://www.oled-info.com/oled-lighting (accessed May 17, 2022).
[58] “OLED Light Panels, Standard and Custom - OLEDWorks.” https://www.oledworks.com/oled-lighting-products/ (accessed Jul. 26, 2022).
[59] “奈米有機光電元件實驗室 Nano Organic Photo.” http://www.mse.nthu.edu.tw/~jjou/ (accessed Jul. 26, 2022).
[60] “Quarterly Display Capex and Equipment Market Share Report - Display Supply Chain Consultants.” https://www.displaysupplychain.com/report/quarterly-display-capex-and-equipment-market-share-report (accessed May 01, 2022).
[61] “• Worldwide - LED lighting market size 2021 | Statista.” https://www.statista.com/statistics/753939/global-led-luminaire-market-size/ (accessed May 02, 2022).
[62] “ElectroniCast sees a fast growing OLED lighting market starting in 2015 | OLED-Info.” https://www.oled-info.com/electronicast-sees-fast-growing-oled-lighting-market-starting-2015 (accessed May 02, 2022).
[63] Z. Wang et al., “Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence,” Journal of Physical Chemistry C, vol. 123, no. 1, pp. 265–274, Oct. 2019, doi: 10.1021/ACS.JPCC.8B10835/SUPPL_FILE/JP8B10835_SI_001.PDF.
[64] T. Jin et al., “Competition of Dexter, Förster, and charge transfer pathways for quantum dot sensitized triplet generation,” The Journal of Chemical Physics, vol. 152, no. 21, p. 214702, Jun. 2020, doi: 10.1063/5.0009833.
[65] S. S. Skourtis, C. Liu, P. Antoniou, A. M. Virshup, and D. N. Beratan, “Dexter energy transfer pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 29, pp. 8115–8120, Jul. 2016, doi: 10.1073/PNAS.1517189113.
[66] S. Bai, P. Zhang, P. Antoniou, S. S. Skourtis, and D. N. Beratan, “Quantum interferences among Dexter energy transfer pathways,” Faraday Discussions, vol. 216, no. 0, pp. 301–318, Jul. 2019, doi: 10.1039/C9FD00007K.
[67] S. Jang, M. D. Newton, and R. J. Silbey, “Multichromophoric Förster resonance energy transfer,” Physical Review Letters, vol. 92, no. 21, p. 218301, May 2004, doi: 10.1103/PHYSREVLETT.92.218301/FIGURES/2/MEDIUM.
[68] L. Duan et al., “Solution processable small molecules for organic light-emitting diodes,” Journal of Materials Chemistry, vol. 20, no. 31, pp. 6392–6407, Jul. 2010, doi: 10.1039/B926348A.
[69] Y. R. Cho, H. S. Kim, Y. J. Yu, and M. C. Suh, “Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure,” Scientific Reports 2015 5:1, vol. 5, no. 1, pp. 1–8, Oct. 2015, doi: 10.1038/srep15903.
[70] A. Hayer et al., “Concepts for solution-processable OLED materials at Merck,” http://dx.doi.org/10.1080/15980316.2011.563061, vol. 12, no. 1, pp. 57–59, Mar. 2011, doi: 10.1080/15980316.2011.563061.
[71] “Ultra-thin Flexible Glass for OLED Products.” https://www.vacuum-glass.net/news/IndustryNews/41.html (accessed Jul. 26, 2022).
[72] “ITO Glass Substrates | PV and OLED, 75 x 25 mm | Ossila.” https://www.ossila.com/products/pv-and-oled-scale-up-substrates (accessed Jul. 26, 2022).
[73] N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2696–2723, Jun. 2012, doi: 10.1016/J.RSER.2012.02.021.
[74] D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Advanced Materials, vol. 23, no. 13, pp. 1482–1513, Apr. 2011, doi: 10.1002/ADMA.201003188.
[75] J. Tang et al., “Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays,” Nature Electronics, vol. 1, no. 3, pp. 191–196, Mar. 2018, doi: 10.1038/S41928-018-0038-8.
[76] K. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, Feb. 2009, doi: 10.1038/NATURE07719.
[77] T. H. Han et al., “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nature Photonics, vol. 6, no. 2, pp. 105–110, 2012, doi: 10.1038/NPHOTON.2011.318.
[78] S. Bae et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, Aug. 2010, doi: 10.1038/NNANO.2010.132.
[79] W. G. Song et al., “High-Performance Flexible Multilayer MoS2 Transistors on Solution-Based Polyimide Substrates,” Advanced Functional Materials, vol. 26, no. 15, pp. 2426–2434, Apr. 2016, doi: 10.1002/ADFM.201505019.
[80] “Europe PMC.” https://europepmc.org/article/med/23670954 (accessed Jun. 30, 2022).
[81] Y. H. Kim, C. Sachse, M. L. MacHala, C. May, L. Müller-Meskamp, and K. Leo, “Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells,” Advanced Functional Materials, vol. 21, no. 6, pp. 1076–1081, Mar. 2011, doi: 10.1002/ADFM.201002290.
[82] Y. Cai et al., “Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range,” ACS Nano, vol. 12, no. 1, pp. 56–62, Jan. 2018, doi: 10.1021/ACSNANO.7B06251/ASSET/IMAGES/LARGE/NN-2017-062513_0006.JPEG.
[83] J. Xu et al., “Highly stretchable polymer semiconductor films through the nanoconfinement effect,” Science (New York, N.Y.), vol. 355, no. 6320, Jan. 2017, doi: 10.1126/SCIENCE.AAH4496.
[84] J. Y. Oh et al., “Intrinsically stretchable and healable semiconducting polymer for organic transistors,” Nature, vol. 539, no. 7629, pp. 411–415, Nov. 2016, doi: 10.1038/NATURE20102.
[85] M. Naguib et al., “Two-dimensional transition metal carbides,” ACS Nano, vol. 6, no. 2, pp. 1322–1331, Feb. 2012, doi: 10.1021/NN204153H/ASSET/IMAGES/LARGE/NN-2011-04153H_0010.JPEG.
[86] J. Xu, J. Shim, J. H. Park, and S. Lee, “MXene Electrode for the Integration of WSe2 and MoS2 Field Effect Transistors,” Advanced Functional Materials, vol. 26, no. 29, pp. 5328–5334, Aug. 2016, doi: 10.1002/ADFM.201600771.
[87] L. Duan, K. Xie, and Y. Qiu, “Review Paper: Progress on efficient cathodes for organic light-emitting diodes,” Journal of the Society for Information Display, vol. 19, no. 6, pp. 453–461, Jun. 2011, doi: 10.1889/JSID19.6.453.
[88] S. Jhulki and J. N. Moorthy, “Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification,” Journal of Materials Chemistry C, vol. 6, no. 31, pp. 8280–8325, Aug. 2018, doi: 10.1039/C8TC01300D.
[89] J. G. Han, S. J. Lee, J. Lee, J. S. Kim, K. T. Lee, and N. S. Choi, “Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries,” ACS Applied Materials and Interfaces, vol. 7, no. 15, pp. 8319–8329, Apr. 2015, doi: 10.1021/ACSAMI.5B01770/SUPPL_FILE/AM5B01770_SI_001.PDF.
[90] J. Ding et al., “Generation of defect clusters for 1O2 production for molecular oxygen activation in photocatalysis,” Journal of Materials Chemistry A, vol. 5, no. 45, pp. 23453–23459, Nov. 2017, doi: 10.1039/C7TA08117K.
[91] J. H. Jou et al., “Plausible degradation mechanisms in organic light-emitting diodes,” Organic Electronics, vol. 67, pp. 222–231, Apr. 2019, doi: 10.1016/J.ORGEL.2019.01.035.
[92] J. Ràfols-Ribé et al., “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Science Advances, vol. 4, no. 5, May 2018, doi: 10.1126/SCIADV.AAR8332/SUPPL_FILE/AAR8332_SM.PDF.
[93] “Study Journals of TYRuan: CIE 1931.” http://tyruan.blogspot.com/2011/12/cie-1931.html (accessed Jul. 26, 2022).
[94] “(41) Introduction to OLED lighting (Acuity Brands) - YouTube.” https://www.youtube.com/watch?v=3nVupTrnw4s (accessed May 27, 2022).
[95] “Introduction to Color Imaging Science - Hsien-Che Lee - Google Books.” https://books.google.com.tw/books?id=rN3kOMOPMmEC&pg=PA443&lpg=PA443&dq=Subtractive+color+is+generated+by+mixing+more+than+one+dye+that+absorbs+some+wavelengths+of+light+and+reflects+others+to+produce+a+color,+used+in+color+printing&source=bl&ots=8UpeEYw8dR&sig=ACfU3U34spSxilPNgC1KaIvO0xIXV_fdkA&hl=en&sa=X&ved=2ahUKEwjR8cuhzP73AhXUA6YKHf-sDqMQ6AF6BAg8EAM#v=onepage&q=Subtractive color is generated by mixing more than one dye that absorbs some wavelengths of light and reflects others to produce a color%2C used in color printing&f=false (accessed May 27, 2022).
[96] “Subtractive color – HiSoUR – Hi So You Are.” https://www.hisour.com/subtractive-color-24755/ (accessed May 27, 2022).
[97] “Additive and Subtractive Color Mixing.” https://isle.hanover.edu/Ch06Color/Ch06ColorMixer.html (accessed May 27, 2022).
[98] “Taming the Wide Gamut using sRGB Emulation | PC Monitors.” https://pcmonitors.info/articles/taming-the-wide-gamut-using-srgb-emulation/ (accessed May 27, 2022).
[99] “Understanding the Color Gamut of an LCD Monitor.” https://www.eizo.com/library/basics/lcd_monitor_color_gamut/ (accessed May 27, 2022).
[100] J. H. Jou et al., “Highly efficient ultra-deep blue organic light-emitting diodes with a wet- and dry-process feasible cyanofluorene acetylene based emitter,” Journal of Materials Chemistry C, vol. 3, no. 10, pp. 2182–2194, Feb. 2015, doi: 10.1039/C4TC02547D.
[101] H. K. Kim et al., “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Organic Electronics, vol. 11, no. 1, pp. 137–145, Jan. 2010, doi: 10.1016/J.ORGEL.2009.10.011.
[102] W. Li et al., “Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and a y coordinate <0.05 based on a fully twisting donor-acceptor molecule,” Journal of Materials Chemistry C, vol. 2, no. 24, pp. 4733–4736, Jun. 2014, doi: 10.1039/C4TC00487F.
[103] S. Reineke, G. Schwartz, K. Walzer, and K. Leo, “Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation,” Applied Physics Letters, vol. 91, no. 12, p. 123508, Sep. 2007, doi: 10.1063/1.2786840.
[104] “Lumiotec announces new high CRI OLED lighting panels, targets museums | OLED-Info.” https://www.oled-info.com/lumiotec-announces-new-high-cri-oled-lighting-panels-targets-museums (accessed May 27, 2022).
[105] “LG Chem produces high-CRI OLED panels that achieve 20,000-hour lifetimes | LEDs Magazine.” https://www.ledsmagazine.com/company-newsfeed/article/16680965/lg-chem-produces-highcri-oled-panels-that-achieve-20000hour-lifetimes (accessed May 27, 2022).
[106] C. Adachi, T. Tsutsui, and S. Saito, “Blue light‐emitting organic electroluminescent devices,” Applied Physics Letters, vol. 56, no. 9, p. 799, Jun. 1998, doi: 10.1063/1.103177.
[107] C. Adachi et al., “Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials,” Applied Physics Letters, vol. 79, no. 13, p. 2082, Sep. 2001, doi: 10.1063/1.1400076.
[108] Y. Kawamura, S. Yanagida, and S. R. Forrest, “Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers,” Journal of Applied Physics, vol. 92, no. 1, p. 87, Jun. 2002, doi: 10.1063/1.1479751.
[109] S. Youn Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Applied Physics Letters, vol. 101, no. 9, p. 093306, Aug. 2012, doi: 10.1063/1.4749285.
[110] H. Nakanotani, K. Masui, J. Nishide, T. Shibata, and C. Adachi, “Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence,” Scientific Reports 2013 3:1, vol. 3, no. 1, pp. 1–6, Jul. 2013, doi: 10.1038/srep02127.
[111] K. Masui, H. Nakanotani, and C. Adachi, “Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence,” Organic Electronics, vol. 14, no. 11, pp. 2721–2726, Nov. 2013, doi: 10.1016/J.ORGEL.2013.07.010.
[112] J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, and C. Adachi, “Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 30, pp. 4599–4604, Jul. 2013, doi: 10.1039/C3TC30699B.
[113] G. Mallesham et al., “Phosphine oxide functionalized pyrenes as efficient blue light emitting multifunctional materials for organic light emitting diodes,” Journal of Materials Chemistry C, vol. 3, no. 6, pp. 1208–1224, Jan. 2015, doi: 10.1039/C4TC01753F.
[114] W. Liu et al., “Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices,” ACS Applied Materials and Interfaces, vol. 7, no. 34, pp. 18930–18936, Aug. 2015, doi: 10.1021/ACSAMI.5B05648/SUPPL_FILE/AM5B05648_SI_001.PDF.
[115] Y. Hiraga, J. I. Nishide, H. Nakanotani, M. Aonuma, and C. Adachi, “High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence,” IEICE Transactions on Electronics, vol. E98.C, no. 10, pp. 971–976, Oct. 2015, doi: 10.1587/TRANSELE.E98.C.971.
[116] “Organic electroluminescence device.” https://www.freepatentsonline.com/5389444.pdf (accessed Apr. 28, 2022).
[117] E. P. Specification, “* EP000875947B1 *,” vol. 99, no. 19, pp. 1–15, 2002.
[118] “WO2001039234 ORGANIC LIGHT EMITTING DIODE HAVING A BLUE PHOSPHORESCENT MOLECULE AS AN EMITTER.” https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2001039234 (accessed Apr. 28, 2022).
[119] Y. Takita, “Highly efficient deep-blue fluorescent dopant for achieving low-power OLED display satisfying BT . 2020 chromaticity,” doi: 10.1002/jsid.634.
[120] H. Liu et al., “Highly efficient deep-blue organic light-emitting diodes based on pyreno[4,5-d]imidazole-anthracene structural isomers,” pp. 10273–10280, 2019, doi: 10.1039/c9tc02990g.
[121] Y. Zou et al., “Unexpected Propeller-Like Hexakis(fluoren-2-yl)benzene Cores for Six-Arm Star-Shaped Oligofluorenes: Highly Efficient Deep-Blue Fluorescent Emitters and Good Hole-Transporting Materials,” Advanced Functional Materials, vol. 23, no. 14, pp. 1781–1788, Apr. 2013, doi: 10.1002/ADFM.201202286.
[122] L. Wang et al., “Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer,” Advanced materials (Deerfield Beach, Fla.), vol. 21, no. 47, pp. 4854–4858, Dec. 2009, doi: 10.1002/ADMA.200901039.
[123] W. Li et al., “Achieving ultra-high efficiency by tuning hole transport and carrier balance in fluorescent blue organic light-emitting diode with extremely simple structure,” Synthetic Metals, vol. 245, pp. 111–115, Nov. 2018, doi: 10.1016/J.SYNTHMET.2018.08.016.
[124] C. G. Zhen, Y. F. Dai, W. J. Zeng, Z. Ma, Z. K. Chen, and J. Kieffer, “Achieving highly efficient fluorescent blue organic light-emitting diodes through optimizing molecular structures and device configuration,” Advanced Functional Materials, vol. 21, no. 4, pp. 699–707, Feb. 2011, doi: 10.1002/ADFM.201002165.
[125] M. Liu et al., “Study of Configuration Differentia and Highly Efficient, Deep-Blue, Organic Light-Emitting Diodes Based on Novel Naphtho[1,2-d]imidazole Derivatives,” Advanced Functional Materials, vol. 25, no. 32, pp. 5190–5198, Aug. 2015, doi: 10.1002/ADFM.201502163.
[126] Z. Li et al., “Easily available , low-cost 9 , 9 ′ -bianthracene derivatives as e ffi cient blue hosts and deep-blue emitters in OLEDs,” Organic Electronics, vol. 66, no. September 2018, pp. 24–31, 2019, doi: 10.1016/j.orgel.2018.12.010.
[127] J. H. Lee et al., “Blue organic light-emitting diodes: current status, challenges, and future outlook,” Journal of Materials Chemistry C, vol. 7, no. 20, pp. 5874–5888, May 2019, doi: 10.1039/C9TC00204A.
[128] S. Jeong, M. Kim, S. H. Kim, and J. Hong, “Efficient deep-blue emitters based on triphenylamine-linked benzimidazole derivatives for nondoped fluorescent organic light-emitting diodes,” Organic Electronics, vol. 14, no. 10, pp. 2497–2504, 2013, doi: 10.1016/j.orgel.2013.06.022.
[129] Y. Jeon, J. Lee, J. Kim, C. Lee, and M. Gong, “Deep-blue OLEDs using novel efficient spiro-type dopant materials,” Organic Electronics, vol. 11, no. 11, pp. 1844–1852, 2010, doi: 10.1016/j.orgel.2010.08.007.
[130] B. Bin Wei et al., “Stable , Glassy , and Versatile Binaphthalene Derivatives Capable of Efficient Hole Transport , Hosting , and Deep- Blue Light Emission,” pp. 2448–2458, 2010, doi: 10.1002/adfm.201000299.
[131] S. Wen, M. Lee, and C. H. Chen, “Recent Development of Blue Fluorescent OLED Materials and Devices,” vol. 1, no. 1, pp. 90–99, 2005.
[132] V. V. Patil, K. H. Lee, and J. Y. Lee, “for blue fluorescent organic light-emitting diodes †,” pp. 8320–8327, 2020, doi: 10.1039/d0tc01268h.
[133] H.-Y. Park et al., “External Quantum Efficiency Exceeding 24% with CIEy Value of 0.08 using a Novel Carbene-Based Iridium Complex in Deep-Blue Phosphorescent Organic Light-Emitting Diodes,” Advanced Materials, vol. 32, no. 29, p. 2002120, Jul. 2020, doi: 10.1002/ADMA.202002120.
[134] M. Sarma et al., “Anomalously Long-Lasting Blue PhOLED Featuring Phenyl-Pyrimidine Cyclometalated Iridium Emitter,” Chem, vol. 3, no. 3, pp. 461–476, Sep. 2017, doi: 10.1016/J.CHEMPR.2017.08.001.
[135] W. Li, J. Li, D. Liu, and Q. Jin, “Simple Bipolar Host Materials for High-E ffi ciency Blue, Green, and White Phosphorescence OLEDs,” 2016, doi: 10.1021/acsami.6b05355.
[136] M. Kim, I. H. Lee, J. Lee, S. Hyun, K. Park, and Y. Kang, “Journal of Industrial and Engineering Chemistry Phenanthridine based Ir ( III ) complex for blue phosphorescent organic light-emitting diodes with long-term operational stability,” Journal of Industrial and Engineering Chemistry, vol. 58, pp. 386–390, 2018, doi: 10.1016/j.jiec.2017.09.052.
[137] C. S. Oh, Y. Lee, H. Noh, and S. Han, “Molecular design of host materials for high power efficiency in blue phosphorescent organic light-emitting diodes doped with an imidazole ligand based triplet emitter,” pp. 3792–3797, 2016, doi: 10.1039/c5tc02595h.
[138] S. Ying et al., “Superior Efficiency and Low-Efficiency Roll-Off White Organic Light-Emitting Diodes Based on Multiple Exciplexes as Hosts Matched to Phosphor Emitters,” ACS Applied Materials and Interfaces, vol. 11, no. 34, pp. 31078–31086, Aug. 2019, doi: 10.1021/ACSAMI.9B09429/ASSET/IMAGES/LARGE/AM9B09429_0006.JPEG.
[139] Y. H. Son et al., “Small single–triplet energy gap bipolar host materials for phosphorescent blue and white organic light emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 33, pp. 5008–5014, Aug. 2013, doi: 10.1039/C3TC30671B.
[140] Y. Feng, X. Zhuang, D. Zhu, Y. Liu, and M. R. Bryce, “heteroleptic phosphorescent iridium ( III ),” pp. 10246–10252, 2016, doi: 10.1039/c6tc04119a.
[141] L. Diode, J. Jou, W. Wang, M. Hsu, C. Liu, and C. Chen, “Small Nano-dot Incorporated High-efficiency Phosphorescent Blue Organic Small Nano-dot Incorporated High-efficiency Phosphorescent Blue Organic Light-emitting Diode,” no. July 2014, 2008, doi: 10.2529/PIERS070827062209.
[142] Z. G. Wu et al., “Novel Design of Iridium Phosphors with Pyridinylphosphinate Ligands for High-Efficiency Blue Organic Light-emitting Diodes,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–9, Dec. 2016, doi: 10.1038/srep38478.
[143] K. R. Wee, A. L. Kim, S. Y. Jeong, S. Kwon, and S. O. Kang, “The relationship between the device performance and hole mobility of host materials in mixed host system for deep blue phosphorescent organic light emitting devices,” Organic Electronics, vol. 12, no. 12, pp. 1973–1979, Dec. 2011, doi: 10.1016/J.ORGEL.2011.08.021.
[144] M. S. Weaver et al., “11.1: Invited Paper: Advances in Blue Phosphorescent Organic Light-Emitting Devices,” SID Symposium Digest of Technical Papers, vol. 37, no. 1, p. 127, 2006, doi: 10.1889/1.2433213.
[145] R. Kumar Konidena, W. Jae Chung, J. Yeob Lee, R. K. Konidena, W. J. Chung, and J. Y. Lee, “Molecular Engineering of Cyano-Substituted Carbazole-Based Host Materials for Simultaneous Achievement of High Efficiency and Long Lifetime in Blue Phosphorescent Organic Light-Emitting Diodes,” Advanced Electronic Materials, vol. 6, no. 4, p. 2000132, Apr. 2020, doi: 10.1002/AELM.202000132.
[146] M. Jung, K. H. Lee, J. Y. Lee, and T. Kim, “A bipolar host based high triplet energy electroplex for an over 10 000 h lifetime in pure blue phosphorescent organic light-emitting diodes,” Materials Horizons, vol. 7, no. 2, pp. 559–565, Feb. 2020, doi: 10.1039/C9MH01268K.
[147] C. Y. Yang, H. J. Jang, K. H. Lee, S. Y. Byeon, J. Y. Lee, and H. Jeong, “12-1: Analysis of Key Factors Affecting the Lifetime of Blue Phosphorescent OLED Using CN Modified Blue Host Materials,” SID Symposium Digest of Technical Papers, vol. 50, no. 1, pp. 141–144, Jun. 2019, doi: 10.1002/SDTP.12875.
[148] S. H. Han, K. H. Lee, and J. Y. Lee, “Spatial separation of two blue triplet emitters for improved lifetime in blue phosphorescent organic light-emitting diodes by confining excitons at the interface between two emitting layers,” Organic Electronics, vol. 69, pp. 227–231, Jun. 2019, doi: 10.1016/J.ORGEL.2019.03.042.
[149] K. Klimes, Z. Q. Zhu, and J. Li, “Efficient Blue Phosphorescent OLEDs with Improved Stability and Color Purity through Judicious Triplet Exciton Management,” Advanced Functional Materials, vol. 29, no. 31, Aug. 2019, doi: 10.1002/adfm.201903068.
[150] J. Yao et al., “High efficiency, low efficiency roll-off and long lifetime fluorescent white organic light-emitting diodes based on strategic management of triplet excitons via triplet–triplet annihilation up-conversion and phosphor sensitization,” Journal of Materials Chemistry C, vol. 8, no. 24, pp. 8077–8084, Jun. 2020, doi: 10.1039/D0TC01622E.
[151] X. Liang et al., “Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes,” New Journal of Chemistry, vol. 42, no. 6, pp. 4317–4323, Mar. 2018, doi: 10.1039/C7NJ04482H.
[152] H. Lim et al., “Highly Efficient Deep-Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio,” Advanced Materials, vol. 32, no. 47, p. 2004083, Nov. 2020, doi: 10.1002/ADMA.202004083.
[153] W. Li et al., “Tri-Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials,” Angewandte Chemie International Edition, vol. 58, no. 33, pp. 11301–11305, Aug. 2019, doi: 10.1002/ANIE.201904272.
[154] T. Miwa, S. Kubo, K. Shizu, T. Komino, C. Adachi, and H. Kaji, “Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters,” Scientific Reports 2017 7:1, vol. 7, no. 1, pp. 1–8, Mar. 2017, doi: 10.1038/s41598-017-00368-5.
[155] H. J. Kim et al., “Color-Tunable Boron-Based Emitters Exhibiting Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence for Efficient Solution-Processable Nondoped Deep-Blue to Sky-Blue OLEDs,” Advanced Optical Materials, vol. 8, no. 14, p. 1902175, Jul. 2020, doi: 10.1002/ADOM.201902175.
[156] F. M. Xie et al., “tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs,” Journal of Materials Chemistry C, vol. 8, no. 17, pp. 5769–5776, May 2020, doi: 10.1039/D0TC00718H.
[157] P. Ganesan et al., “Isomeric spiro-[acridine-9,9′-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances,” Journal of Materials Chemistry C, vol. 6, no. 37, pp. 10088–10100, Sep. 2018, doi: 10.1039/C8TC03645D.
[158] C. S. Oh et al., “Dihedral Angle Control of Blue Thermally Activated Delayed Fluorescent Emitters through Donor Substitution Position for Efficient Reverse Intersystem Crossing,” ACS Applied Materials and Interfaces, vol. 10, no. 41, pp. 35420–35429, Oct. 2018, doi: 10.1021/ACSAMI.8B10595/SUPPL_FILE/AM8B10595_SI_005.CIF.
[159] X. Ban et al., “Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers,” Chemistry – A European Journal, vol. 26, no. 14, pp. 3090–3102, Mar. 2020, doi: 10.1002/CHEM.201904415.
[160] J. Yoon et al., “Asymmetric Host Molecule Bearing Pyridine Core for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs,” Chemistry – A European Journal, vol. 26, no. 69, pp. 16383–16391, Dec. 2020, doi: 10.1002/CHEM.202002655.
[161] L. Su et al., “High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs,” ACS Applied Materials and Interfaces, vol. 12, no. 28, pp. 31706–31715, Jul. 2020, doi: 10.1021/ACSAMI.0C07840/ASSET/IMAGES/LARGE/AM0C07840_0006.JPEG.
[162] S. G. Ihn et al., “An Alternative Host Material for Long-Lifespan Blue Organic Light-Emitting Diodes Using Thermally Activated Delayed Fluorescence,” Advanced Science, vol. 4, no. 8, p. 1600502, Aug. 2017, doi: 10.1002/ADVS.201600502.
[163] C. Y. Yang, K. H. Lee, and J. Y. Lee, “Zig-Zag Type Molecular Design Strategy of N-Type Hosts for Sky-Blue Thermally-Activated Delayed Fluorescence Organic Light-Emitting Diodes,” Chemistry - A European Journal, vol. 26, no. 11, pp. 2429–2435, Feb. 2020, doi: 10.1002/CHEM.201904477.
[164] C. Hosokawa, N. Kawasaki, S. Sakamoto, and T. Kusumoto, “Bright blue electroluminescence from hole transporting polycarbonate,” Applied Physics Letters, vol. 61, no. 21, p. 2503, Jun. 1998, doi: 10.1063/1.108162.
[165] C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient behavior of organic thin film electroluminescence,” Applied Physics Letters, vol. 60, no. 10, p. 1220, Jun. 1998, doi: 10.1063/1.107411.
[166] C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Transient electroluminescence from hole transporting emitting layer in nanosecond region,” Applied Physics Letters, vol. 63, no. 10, p. 1322, Jun. 1998, doi: 10.1063/1.109718.
[167] H. Vestweber, R. Sander, A. Greiner, W. Heitz, R. F. Mahrt, and H. Bässler, “Electroluminescence from polymer blends and molecularly doped polymers,” Synthetic Metals, vol. 64, no. 2–3, pp. 141–145, Jun. 1994, doi: 10.1016/0379-6779(94)90105-8.
[168] C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, “Efficient electroluminescence of distyrylarylene with hole transporting ability,” Journal of Applied Physics, vol. 78, no. 9, p. 5831, Jun. 1998, doi: 10.1063/1.359650.
[169] M. H. Ho, C. M. Chang, T. Y. Chu, T. M. Chen, and C. H. Chen, “Iminodibenzyl-substituted distyrylarylenes as dopants for blue and white organic light-emitting devices,” Organic Electronics, vol. 9, no. 1, pp. 101–110, Feb. 2008, doi: 10.1016/J.ORGEL.2007.09.006.
[170] B. Michael Wind, U.-M. Wiesler, K. Saalwächter, K. Müllen, and H. Wolfgang Spiess, “Shape-Persistent Polyphenylene DendrimersÐ Restricted Molecular Dynamics from Advanced Solid-State Nuclear Magnetic Resonance Techniques**,” Appl. Phys. Lett, vol. 76, 2000, doi: 10.1002/1521-4095.
[171] S. Rosenfeldt et al., “Analysis of the Spatial Dimensions of Fully Aromatic Dendrimers,” Angewandte Chemie International Edition, vol. 43, no. 1, pp. 109–112, Jan. 2004, doi: 10.1002/ANIE.200351810.
[172] “Novel Green Light‐Emitting Carbazole Derivatives: Potential Electroluminescent Materials - Thomas - 2000 - Advanced Materials - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4095%28200012%2912%3A24%3C1949%3A%3AAID-ADMA1949%3E3.0.CO%3B2-X (accessed May 16, 2022).
[173] C. J. Tonzola, M. M. Alam, W. Kaminsky, and S. A. Jenekhe, “New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of a Series of Diphenylanthrazolines,” Journal of the American Chemical Society, vol. 125, no. 44, pp. 13548–13558, Nov. 2003, doi: 10.1021/JA036314E/SUPPL_FILE/JA036314ESI20030822_043610.PDF.
[174] T. M. Figueira-Duarte, P. G. Del Rosso, R. Trattnig, S. Sax, E. J. W. List, and K. Mullen, “Designed Suppression of Aggregation in Polypyrene: Toward High-Performance Blue-Light-Emitting Diodes,” Advanced Materials, vol. 22, no. 9, pp. 990–993, Mar. 2010, doi: 10.1002/ADMA.200902744.
[175] Y. Xing et al., “Carbazole–pyrene-based organic emitters for electroluminescent device,” Chemical Physics Letters, vol. 408, no. 1–3, pp. 169–173, Jun. 2005, doi: 10.1016/J.CPLETT.2005.04.019.
[176] W. Sotoyama et al., “45.3: Tetra-Substituted Pyrenes: New Class of Blue Emitter for Organic Light-Emitting Diodes,” SID Symposium Digest of Technical Papers, vol. 34, no. 1, pp. 1294–1297, May 2003, doi: 10.1889/1.1832523.
[177] Y. Miura, E. Yamano, A. Tanaka, and J. Yamauchi, “Generation, Isolation, and Characterization of N-(Arylthio)-7-tert-butyl- and N-(Arylthio)-2,7-di-tert-butyl-1-pyrenylaminyl Radicals,” Journal of Organic Chemistry, vol. 59, no. 12, pp. 3294–3300, Jun. 1994, doi: 10.1021/JO00091A015.
[178] E. Grill et al., “Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods,” Science, vol. 258, no. 5086, pp. 1355–1358, 1992, doi: 10.1126/SCIENCE.1455230.
[179] J. Kim, R. Beardslee, … D. P.-T. J. of C., and undefined 1969, “Fluorescence lifetimes of pyrene monomer and excimer at high pressures,” aip.scitation.org, vol. 51, no. 6, p. 1638, 1969, doi: 10.1063/1.1672406.
[180] J. L. Kropp, W. R. Dawson, and M. W. Windsor, “Radiative and radiationless processes in aromatic molecules. Pyrene,” Journal of Physical Chemistry, vol. 73, no. 6, pp. 1747–1752, 1969, doi: 10.1021/J100726A019.
[181] Z. Zhao, J. H. Li, X. Chen, X. Wang, P. Lu, and Y. Yang, “Solution-processable stiff dendrimers: Synthesis, photophysics, film morphology, and electroluminescence,” Journal of Organic Chemistry, vol. 74, no. 1, pp. 383–395, Jan. 2009, doi: 10.1021/JO802237C.
[182] “Diarylamino functionalized pyrene derivatives for use in blue OLEDs and complex formation,” pubs.rsc.org, Accessed: May 16, 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2004/jm/b410330k.
[183] J. Jou, Y. Chen, J. Tseng, … R. W.-J. of M., and undefined 2012, “The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter,” pubs.rsc.org, Accessed: May 16, 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm32216a.
[184] P. Kotchapradist, N. Prachumrak, … R. T.-J. of M., and undefined 2013, “Pyrene-functionalized carbazole derivatives as non-doped blue emitters for highly efficient blue organic light-emitting diodes,” pubs.rsc.org, Accessed: May 16, 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2013/tc/c3tc30719k.
[185] C. Adachi, T. Tsutsui, and S. Saito, “Blue light‐emitting organic electroluminescent devices,” Applied Physics Letters, vol. 56, no. 9, p. 799, Jun. 1998, doi: 10.1063/1.103177.
[186] J. Shi, C. T.-A. physics letters, and undefined 2002, “Anthracene derivatives for stable blue-emitting organic electroluminescence devices,” aip.scitation.org, vol. 80, no. 17, p. 3201, Apr. 2002, doi: 10.1063/1.1475361.
[187] J. Park, “Highly efficient dual-core derivatives with EQEs as high as 8.38% at high brightness for OLED blue emitters,” no. 3, pp. 14709–14716, 2019, doi: 10.1039/c9tc04603h.
[188] W. Y. Lai, R. Zhu, Q. L. Fan, L. T. Hou, Y. Cao, and W. Huang, “Monodisperse six-armed triazatruxenes: Microwave-enhanced synthesis and highly efficient pure-deep-blue electroluminescence,” Macromolecules, vol. 39, no. 11, pp. 3707–3709, May 2006, doi: 10.1021/MA060154K.
[189] W. Y. Lai, Q. Y. He, R. Zhu, Q. Q. Chen, and W. Huang, “Kinked Star-Shaped Fluorene/ Triazatruxene Co-oligomer Hybrids with Enhanced Functional Properties for High-Performance, Solution-Processed, Blue Organic Light-Emitting Diodes,” Advanced Functional Materials, vol. 18, no. 2, pp. 265–276, Jan. 2008, doi: 10.1002/ADFM.200700224.
[190] A. You, M. A. Y. Be, and I. In, “High efficiency deep-blue organic light- emitting diode with a blue dye in low- polarity host,” vol. 193314, no. April, pp. 2–5, 2008, doi: 10.1063/1.2931071.
[191] A. Fischer et al., “Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer .,” vol. 1, pp. 4–5, 2006.
[192] R. J. Tseng, R. C. Chiechi, F. Wudl, and Y. Yang, “Highly efficient 7,8,10-triphenylfluoranthene-doped blue organic light-emitting diodes for display application,” Applied Physics Letters, vol. 88, no. 9, p. 093512, Mar. 2006, doi: 10.1063/1.2167814.
[193] J. H. Jou, P. H. Chiang, Y. P. Lin, C. Y. Chang, and C. L. Lai, “Hole-transporting-layer-free high-efficiency fluorescent blue organic light-emitting diodes,” Applied Physics Letters, vol. 91, no. 4, p. 043504, Jul. 2007, doi: 10.1063/1.2759984.
[194] Z. Li et al., “Fluorinated 9,9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices,” Journal of Materials Chemistry C, vol. 1, no. 11, pp. 2183–2192, Feb. 2013, doi: 10.1039/C3TC00466J.
[195] J. Yu, Z. Chen, Y. Sakuratani, H. Suzuki, M. Tokita, and S. Miyata, “A novel blue light emitting diode using tris(2,3-methyl-8-hydroxyquinoline) aluminum(III) as emitter,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 38, no. 12 A, pp. 6762–6763, Dec. 1999, doi: 10.1143/JJAP.38.6762/XML.
[196] L. Chan, R. Lee, C. Hsieh, H. Yeh, and C. Chen, “Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials,” vol. 78, no. June 26, pp. 6469–6479, 2002.
[197] D. Liu et al., “A novel tetraphenylsilane – phenanthroimidazole hybrid host material for highly efficient blue fluorescent , green and red phosphorescent,” pp. 4394–4401, 2015, doi: 10.1039/c5tc00333d.
[198] H.-W. Lin et al., “Efficient Organic Blue-Light-Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties,” Advanced Materials, vol. 16, no. 1, pp. 61–65, Jan. 2004, doi: 10.1002/ADMA.200305619.
[199] P. Peumans et al., “Highly efficient, deep‐blue doped organic light‐emitting devices,” Wiley Online Library, vol. 80, no. 20, pp. 2493–2497, Oct. 2002, doi: 10.1002/adma.200501169.
[200] M. Baldo, M. ThompSOn, S. F.- Nature, and undefined 2000, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” nature.com, Accessed: May 16, 2022. [Online]. Available: https://www.nature.com/articles/35001541.
[201] J. Kido, M. Kimura, K. N.- Science, and undefined 1995, “Multilayer white light-emitting organic electroluminescent device,” science.org, vol. 267, no. 5202, pp. 1332–1334, Mar. 1995, doi: 10.1126/science.267.5202.1332.
[202] B. H. Benmansour, T. Shioya, Y. Sato, and G. C. Bazan, “Anthracene-Containing Binaphthol Chromophores for Light-Emitting Diode ( LED ) Fabrication **,” no. 11, pp. 883–886, 2003, doi: 10.1002/adfm.200304456.
[203] R. J. Holmes et al., “Saturated deep blue organic electrophosphorescence using a fluorine-free emitter,” Applied Physics Letters, vol. 87, no. 24, p. 243507, Dec. 2005, doi: 10.1063/1.2143128.
[204] B. Xiaohui Yang et al., “Efficient Blue- and White-Emitting Electrophosphorescent Devices Based on Platinum(II) [1,3-Difluoro-4,6-di(2-pyridinyl)benzene] Chloride,” Advanced Materials, vol. 20, no. 12, pp. 2405–2409, Jun. 2008, doi: 10.1002/ADMA.200702940.
[205] H. Sasabe et al., “High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex,” Advanced Materials, vol. 22, no. 44, pp. 5003–5007, Nov. 2010, doi: 10.1002/ADMA.201002254.
[206] X.-C. Hang et al., “Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design,” Angewandte Chemie International Edition, vol. 52, no. 26, pp. 6753–6756, Jun. 2013, doi: 10.1002/ANIE.201302541.
[207] C. D. Ertl et al., “Colour tuning by the ring roundabout: [Ir(C^N)2(N^N)]+ emitters with sulfonyl-substituted cyclometallating ligands,” RSC Advances, vol. 5, no. 53, pp. 42815–42827, May 2015, doi: 10.1039/C5RA07940C.
[208] L. He et al., “Toward fluorine-free blue-emitting cationic iridium complexes: to generate emission from the cyclometalating ligands with enhanced triplet energy,” Dalton Transactions, vol. 45, no. 13, pp. 5604–5613, Mar. 2016, doi: 10.1039/C5DT04728E.
[209] N. M. Shavaleev, R. Scopelliti, M. Grätzel, and M. K. Nazeeruddin, “Note,” Inorganica Chimica Acta, vol. Complete, no. 388, pp. 84–87, Jun. 2012, doi: 10.1016/J.ICA.2012.03.008.
[210] J. Li et al., “Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands,” Inorganic Chemistry, vol. 44, no. 6, pp. 1713–1727, Mar. 2005, doi: 10.1021/IC048599H/SUPPL_FILE/IC048599HSI20050119_091901.PDF.
[211] C. Adachi et al., “Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials,” Applied Physics Letters, vol. 79, no. 13, p. 2082, Sep. 2001, doi: 10.1063/1.1400076.
[212] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, “Efficient, deep-blue organic electrophosphorescence by guest charge trapping,” Applied Physics Letters, vol. 83, no. 18, p. 3818, Oct. 2003, doi: 10.1063/1.1624639.
[213] A. Manuscript, “Materials Chemistry C,” 2020, doi: 10.1039/D0TC05150K.
[214] J. Kang, R. Zaen, K. M. Park, K. H. Lee, J. Y. Lee, and Y. Kang, “Cyclometalated platinum(II) β-diketonate complexes as single dopants for high-efficiency white OLEDs: The relationship between intermolecular interactions in the solid state and electroluminescent efficiency,” Crystal Growth and Design, vol. 20, no. 9, pp. 6129–6138, Sep. 2020, doi: 10.1021/ACS.CGD.0C00838/ASSET/IMAGES/LARGE/CG0C00838_0009.JPEG.
[215] K. Y. Liao et al., “Pt(II) metal complexes tailored with a newly designed spiro-arranged tetradentate ligand; Harnessing of charge-transfer phosphorescence and fabrication of sky blue and white OLEDs,” Inorganic Chemistry, vol. 54, no. 8, pp. 4029–4038, Apr. 2015, doi: 10.1021/ACS.INORGCHEM.5B00281/SUPPL_FILE/IC5B00281_SI_002.CIF.
[216] K. Klimes, Z.-Q. Zhu, J. Li, K. Klimes, Z.-Q. Zhu, and J. Li, “Efficient Blue Phosphorescent OLEDs with Improved Stability and Color Purity through Judicious Triplet Exciton Management,” Advanced Functional Materials, vol. 29, no. 31, p. 1903068, Aug. 2019, doi: 10.1002/ADFM.201903068.
[217] Q. De Liu, R. Wang, and S. Wang, “Blue phosphorescent Zn(II) and orange phosphorescent Pt(II) complexes of 4,4′-diphenyl-6,6′-dimethyl-2,2′-bipyrimidine,” Dalton Transactions, no. 14, pp. 2073–2079, Jul. 2004, doi: 10.1039/B404905E.
[218] H. Xu et al., “A novel deep blue-emitting ZnII complex based on carbazole-modified 2-(2-hydroxyphenyl)benzimidazole: Synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties,” Journal of Physical Chemistry C, vol. 112, no. 39, pp. 15517–15525, Oct. 2008, doi: 10.1021/JP803325G/ASSET/IMAGES/LARGE/JP-2008-03325G_0015.JPEG.
[219] C. S. Oh and J. Y. Lee, “High triplet energy Zn complexes as host materials for green and blue phosphorescent organic light-emitting diodes,” Dyes and Pigments, vol. 99, no. 2, pp. 374–377, Nov. 2013, doi: 10.1016/J.DYEPIG.2013.05.021.
[220] M. Zhu, C. Y.-C. S. Reviews, and undefined 2013, “Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes,” pubs.rsc.org, Accessed: May 16, 2022. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2013/cs/c3cs35440g.
[221] B. Ayataka Endo et al., “Thermally Activated Delayed Fluorescence from Sn4+–Porphyrin Complexes and Their Application to Organic Light Emitting Diodes — A Novel Mechanism for,” Wiley Online Library, vol. 21, no. 47, pp. 4802–4806, Dec. 2009, doi: 10.1002/adma.200900983.
[222] L.-S. Cui et al., “Controlling Singlet–Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters,” Angewandte Chemie International Edition, vol. 56, no. 6, pp. 1571–1575, Feb. 2017, doi: 10.1002/ANIE.201609459.
[223] X. Cai, S.-J. Su, X. Y. Cai, and S.-J. Su, “Marching Toward Highly Efficient, Pure-Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes,” Advanced Functional Materials, vol. 28, no. 43, p. 1802558, Oct. 2018, doi: 10.1002/ADFM.201802558.
[224] S. J. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs,” Advanced Materials, vol. 20, no. 11, pp. 2125–2130, Jun. 2008, doi: 10.1002/ADMA.200701730.
[225] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, “Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes -A novel mechanism for electroluminescence,” Advanced Materials, vol. 21, no. 47, pp. 4802–4806, Dec. 2009, doi: 10.1002/ADMA.200900983.
[226] L. S. Cui et al., “Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices,” Advanced Materials, vol. 28, no. 35, pp. 7620–7625, Sep. 2016, doi: 10.1002/ADMA.201602127.
[227] Y. Tao et al., “Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics,” Advanced Materials, vol. 26, no. 47, pp. 7931–7958, Dec. 2014, doi: 10.1002/ADMA.201402532.
[228] H. Shin et al., “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Advanced Materials, vol. 26, no. 27, pp. 4730–4734, Jul. 2014, doi: 10.1002/ADMA.201400955.
[229] S. Hirata et al., “Highly efficient blue electroluminescence based on thermally activated delayed fluorescence,” Nature Materials 2014 14:3, vol. 14, no. 3, pp. 330–336, Dec. 2014, doi: 10.1038/nmat4154.
[230] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nature Photonics 2014 8:4, vol. 8, no. 4, pp. 326–332, Mar. 2014, doi: 10.1038/nphoton.2014.12.
[231] Q. Zhang et al., “Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters,” Advanced Materials, vol. 27, no. 12, pp. 2096–2100, Mar. 2015, doi: 10.1002/ADMA.201405474.
[232] Y. J. Yu, X. Q. Wang, J. F. Liu, Z. Q. Jiang, and L. S. Liao, “Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel,” iScience, vol. 24, no. 2, Feb. 2021, doi: 10.1016/J.ISCI.2021.102123.
[233] L. Evaristo De Sousa, L. Dos, S. Born, P. Henrique De Oliveira Neto, and P. De Silva, “Triplet-to-singlet exciton transfer in hyperfluorescent OLED materials,” Journal of Materials Chemistry C, vol. 10, no. 12, pp. 4914–4922, Mar. 2022, doi: 10.1039/D1TC05596H.
[234] F. B. Dias et al., “Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters,” Advanced Materials, vol. 25, no. 27, pp. 3707–3714, Jul. 2013, doi: 10.1002/ADMA.201300753.
[235] Z. W. Li et al., “Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence in the Pd Complex: Mechanism and Dual Upconversion Channels,” Journal of Physical Chemistry Letters, vol. 12, pp. 5944–5950, 2021, doi: 10.1021/ACS.JPCLETT.1C01558/ASSET/IMAGES/LARGE/JZ1C01558_0005.JPEG.
[236] M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System,” ACS Central Science, vol. 3, no. 7, pp. 769–777, Jul. 2017, doi: 10.1021/ACSCENTSCI.7B00183/SUPPL_FILE/OC7B00183_SI_002.CIF.
[237] S. Madayanad Suresh et al., “Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes,” Advanced Functional Materials, vol. 30, no. 33, p. 1908677, Aug. 2020, doi: 10.1002/ADFM.201908677.
[238] S. Weissenseel, A. Gottscholl, R. Bönnighausen, V. Dyakonov, A. Sperlich, and J. Maximilian, “Long-Lived Spin-Polarized Intermolecular Exciplex States in Thermally Activated Delayed Fluorescence-Based Organic Light-Emitting Diodes Experimental Physics 6 and Würzburg-Dresden Cluster of Excellence ct.”
[239] Y. Sakai et al., “Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes,” Chemical Communications, vol. 51, no. 15, pp. 3181–3184, Feb. 2015, doi: 10.1039/C4CC09403D.
[240] H. Kanno, K. Ishikawa, Y. Nishio, A. Endo, C. Adachi, and K. Shibata, “Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Applied Physics Letters, vol. 90, no. 12, p. 123509, Mar. 2007, doi: 10.1063/1.2643908.
[241] Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K. Shibata, “White-light-emitting material for organic electroluminescent devices,” Japanese Journal of Applied Physics, Part 2: Letters, vol. 35, no. 10 SUPPL. B, p. L1339, Oct. 1996, doi: 10.1143/JJAP.35.L1339/XML.
[242] NakamuraNorikazu, WakabayashiShinichi, MiyairiKeiichi, and FujiiTsuneo, “A Novel Blue Light Emitting Material Prepared from 2-(o-Hydroxyphenyl)benzoxazole,” http://dx.doi.org/10.1246/cl.1994.1741, vol. 23, no. 9, pp. 1741–1742, Apr. 2006, doi: 10.1246/CL.1994.1741.
[243] M. Osawa, “Highly efficient blue-green delayed fluorescence from copper( i ) thiolate complexes: luminescence color alteration by orientation change of the aryl ring,” Chemical Communications, vol. 50, no. 15, pp. 1801–1803, Jan. 2014, doi: 10.1039/C3CC47871H.
[244] L. Kang, J. Chen, T. Teng, X. L. Chen, R. Yu, and C. Z. Lu, “Experimental and theoretical studies of highly emissive dinuclear Cu( i ) halide complexes with delayed fluorescence,” Dalton Transactions, vol. 44, no. 25, pp. 11649–11659, Jun. 2015, doi: 10.1039/C5DT01292A.
[245] Q. Zhang, J. Chen, X. Y. Wu, X. L. Chen, R. Yu, and C. Z. Lu, “Outstanding blue delayed fluorescence and significant processing stability of cuprous complexes with functional pyridine–pyrazolate diimine ligands,” Dalton Transactions, vol. 44, no. 15, pp. 6706–6710, Apr. 2015, doi: 10.1039/C5DT00865D.
[246] D. M. Zink et al., “Synthesis, structure, and characterization of dinuclear copper(I) halide complexes with P^N ligands featuring exciting photoluminescence properties,” Inorganic Chemistry, vol. 52, no. 5, pp. 2292–2305, Mar. 2013, doi: 10.1021/IC300979C/SUPPL_FILE/IC300979C_SI_002.CIF.
[247] J. C. Deaton et al., “E-type delayed fluorescence of a phosphine-supported cu 2(μ-nar 2) 2 diamond core: Harvesting singlet and triplet excitons in OLEDs,” Journal of the American Chemical Society, vol. 132, no. 27, pp. 9499–9508, Jul. 2010, doi: 10.1021/JA1004575/SUPPL_FILE/JA1004575_SI_001.PDF.
[248] S. Igawa, M. Hashimoto, I. Kawata, M. Yashima, M. Hoshino, and M. Osawa, “Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper( i ) complexes,” Journal of Materials Chemistry C, vol. 1, no. 3, pp. 542–551, Dec. 2012, doi: 10.1039/C2TC00263A.
[249] M. Osawa, I. Kawata, R. Ishii, S. Igawa, M. Hashimoto, and M. Hoshino, “Application of neutral d 10 coinage metal complexes with an anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 28, pp. 4375–4383, Jun. 2013, doi: 10.1039/C3TC30524D.
[250] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, “Thermally activated delayed fluorescence from Sn(4+)-porphyrin complexes and their application to organic light emitting diodes--a novel mechanism for electroluminescence,” Advanced materials (Deerfield Beach, Fla.), vol. 21, no. 47, pp. 4802–4806, Dec. 2009, doi: 10.1002/ADMA.200900983.
[251] D. Volz et al., “Molecular construction kit for tuning solubility, stability and luminescence properties: Heteroleptic MePyrPHOS-copper iodide-complexes and their application in organic light-emitting diodes,” Chemistry of Materials, vol. 25, no. 17, pp. 3414–3426, Sep. 2013, doi: 10.1021/CM4010807/SUPPL_FILE/CM4010807_SI_001.PDF.
[252] S. Nam et al., “Improved Efficiency and Lifetime of Deep-Blue Hyperfluorescent Organic Light-Emitting Diode using Pt(II) Complex as Phosphorescent Sensitizer,” Advanced Science, vol. 8, no. 16, p. 2100586, Aug. 2021, doi: 10.1002/ADVS.202100586.
[253] S. O. Jeon et al., “High-efficiency, long-lifetime deep-blue organic light-emitting diodes,” Nature Photonics 2021 15:3, vol. 15, no. 3, pp. 208–215, Feb. 2021, doi: 10.1038/s41566-021-00763-5.
[254] J. H. Jou et al., “Highly efficient ultra-deep blue organic light-emitting diodes with a wet- and dry-process feasible cyanofluorene acetylene based emitter,” Journal of Materials Chemistry C, vol. 3, no. 10, pp. 2182–2194, Feb. 2015, doi: 10.1039/C4TC02547D.
[255] D. Kumar, K. R. J. Thomas, C. C. Lin, and J. H. Jou, “Pyrenoimidazole-based deep-blue-emitting materials: optical, electrochemical, and electroluminescent characteristics,” Chemistry, an Asian journal, vol. 8, no. 9, pp. 2111–2124, Sep. 2013, doi: 10.1002/ASIA.201300271.
[256] V. Bulović, R. Deshpande, M. E. Thompson, and S. R. Forrest, “Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect,” Chemical Physics Letters, vol. 308, no. 3–4, pp. 317–322, Jul. 1999, doi: 10.1016/S0009-2614(99)00580-1.
[257] W. C. Chen, Y. Yuan, S. F. Ni, Q. X. Tong, F. L. Wong, and C. S. Lee, “Achieving efficient violet-blue electroluminescence with CIEy <0.06 and EQE >6% from naphthyl-linked phenanthroimidazole–carbazole hybrid fluorophores,” Chemical Science, vol. 8, no. 5, pp. 3599–3608, May 2017, doi: 10.1039/C6SC05619A.
[258] J. H. Jou et al., “The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter,” Journal of Materials Chemistry, vol. 22, no. 31, pp. 15500–15506, Jul. 2012, doi: 10.1039/C2JM32216A.
[259] S. L. Lin et al., “Highly Efficient Carbazole-π-Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light-Emitting Diodes,” Advanced Materials, vol. 20, no. 20, pp. 3947–3952, Oct. 2008, doi: 10.1002/ADMA.200801023.
[260] M. Reig, J. Puigdollers, and D. Velasco, “Molecular order of air-stable p-type organic thin-film transistors by tuning the extension of the π-conjugated core: the cases of indolo[3,2-b]carbazole and triindole semiconductors,” Journal of Materials Chemistry C, vol. 3, no. 3, pp. 506–513, Dec. 2014, doi: 10.1039/C4TC01692K.
[261] S. Chen et al., “Impact of N-substitution of a carbazole unit on molecular packing and charge transport of DPP–carbazole copolymers,” Journal of Materials Chemistry C, vol. 2, no. 9, pp. 1683–1690, Feb. 2014, doi: 10.1039/C3TC31753F.
[262] M. Yu et al., “Starburst 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes,” Journal of Materials Chemistry C, vol. 3, no. 4, pp. 861–869, Jan. 2015, doi: 10.1039/C4TC02173H.
[263] J. Xiao and S. Yang, “Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors,” RSC Advances, vol. 1, no. 4, pp. 588–595, Sep. 2011, doi: 10.1039/C1RA00342A.
[264] S. Sahoo, D. K. Dubey, M. Singh, V. Joseph, K. R. J. Thomas, and J. H. Jou, “Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter,” Japanese Journal of Applied Physics, vol. 57, no. 4, p. 04FL08, Apr. 2018, doi: 10.7567/JJAP.57.04FL08/XML.
[265] J. H. Jou et al., “Enabling a 6.5% External Quantum Efficiency Deep-Blue Organic Light-Emitting Diode with a Solution-Processable Carbazole-Based Emitter,” Journal of Physical Chemistry C, vol. 122, no. 42, pp. 24295–24303, Oct. 2018, doi: 10.1021/ACS.JPCC.8B07641/ASSET/IMAGES/LARGE/JP-2018-076412_0002.JPEG.
[266] Y. Wang, H. Huang, Y. Wang, Q. Zhu, and J. Qin, “Simple oxadiazole derivatives as deep blue fluorescent emitter and bipolar host for organic light-emitting diodes,” OptMa, vol. 84, pp. 278–283, Oct. 2018, doi: 10.1016/J.OPTMAT.2018.07.015.
[267] C. C. Huang, M. M. Xue, F. P. Wu, Y. Yuan, L. S. Liao, and M. K. Fung, “Deep-Blue and Hybrid-White Organic Light Emitting Diodes Based on a Twisting Carbazole-Benzofuro[2,3-b]Pyrazine Fluorescent Emitter,” Molecules (Basel, Switzerland), vol. 24, no. 2, 2019, doi: 10.3390/MOLECULES24020353.
[268] A. K. Pal et al., “High-Efficiency Deep-Blue-Emitting Organic Light-Emitting Diodes Based on Iridium(III) Carbene Complexes,” Advanced Materials, vol. 30, no. 50, p. 1804231, Dec. 2018, doi: 10.1002/ADMA.201804231.
[269] R. Wang et al., “Solution-processed white organic light-emitting diodes with bi-component emitting layer based on symmetry blue spiro-sulfone derivative,” Organic Electronics, vol. 71, pp. 24–30, Aug. 2019, doi: 10.1016/J.ORGEL.2019.04.034.
[270] S. Weissenseel et al., “Getting the Right Twist: Influence of Donor-Acceptor Dihedral Angle on Exciton Kinetics and Singlet-Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter,” Journal of Physical Chemistry C, 2019, doi: 10.1021/ACS.JPCC.9B08269/SUPPL_FILE/JP9B08269_SI_001.PDF.
[271] C.-Y. Chan et al., “Rational Molecular Design for Deep-Blue Thermally Activated Delayed Fluorescence Emitters,” Advanced Functional Materials, vol. 28, no. 11, p. 1706023, Mar. 2018, doi: 10.1002/ADFM.201706023.
[272] Y. Luo et al., “An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9%,” Advanced Materials, vol. 32, no. 32, p. 2001248, Aug. 2020, doi: 10.1002/ADMA.202001248.
[273] D. Gudeika et al., “Oxygen sensing and OLED applications of di-tert-butyl-dimethylacridinyl disubstituted oxygafluorene exhibiting long-lived deep-blue delayed fluorescence,” Journal of Materials Chemistry C, vol. 8, no. 28, pp. 9632–9638, Jul. 2020, doi: 10.1039/D0TC01648A.
[274] J. Yang et al., “Rational Molecular Design for Efficient Exciton Harvesting, and Deep-Blue OLED Application,” Advanced Optical Materials, vol. 6, no. 15, p. 1800342, Aug. 2018, doi: 10.1002/ADOM.201800342.
[275] C. Fu et al., “Highly efficient deep-blue OLEDs based on hybridized local and charge-transfer emitters bearing pyrene as the structural unit,” Chemical Communications, vol. 55, no. 44, pp. 6317–6320, May 2019, doi: 10.1039/C9CC02355K.
[276] Y. Yu et al., “Highly efficient deep-blue light-emitting material based on V-Shaped donor-acceptor triphenylamine-phenanthro[9,10-d]imidazole molecule,” Dyes and Pigments, vol. 180, p. 108511, Sep. 2020, doi: 10.1016/J.DYEPIG.2020.108511.
[277] H. Usta et al., “Highly Efficient Deep-Blue Electroluminescence Based on a Solution-Processable A-π-D-π-A Oligo(p-phenyleneethynylene) Small Molecule,” ACS Applied Materials and Interfaces, vol. 11, no. 47, pp. 44474–44486, Nov. 2019, doi: 10.1021/ACSAMI.9B12971/SUPPL_FILE/AM9B12971_SI_002.CIF.
[278] H. Zhang et al., “Novel Deep-Blue Hybridized Local and Charge-Transfer Host Emitter for High-Quality Fluorescence/Phosphor Hybrid Quasi-White Organic Light-Emitting Diode,” Advanced Functional Materials, vol. 31, no. 25, p. 2100704, Jun. 2021, doi: 10.1002/ADFM.202100704.
[279] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, “Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes,” Journal of Applied Physics, vol. 106, no. 12, p. 124510, Dec. 2009, doi: 10.1063/1.3273407.
[280] A. A. Turshatov and S. B. Baluschev, “Triplet-Triplet Annihilation Assisted Upconversion: All-Optical Tools for Probing Physical Parameter of Soft Matter 31,” doi: 10.1007/978-1-4614-5176-1_31.
[281] J. Y. Hu et al., “Bisanthracene-Based Donor–Acceptor-type Light-Emitting Dopants: Highly Efficient Deep-Blue Emission in Organic Light-Emitting Devices,” Advanced Functional Materials, vol. 24, no. 14, pp. 2064–2071, Apr. 2014, doi: 10.1002/ADFM.201302907.
[282] Y. H. Chen et al., “Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices,” Chemical Science, vol. 7, no. 7, pp. 4044–4051, Jun. 2016, doi: 10.1039/C6SC00100A.
[283] W. Zeng et al., “Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters,” Journal of Materials Chemistry C, vol. 6, no. 16, pp. 4479–4484, Apr. 2018, doi: 10.1039/C8TC00317C.
[284] L. Peng et al., “Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y (y ≤ 0.08) based on triplet-triplet annihilation,” Science Bulletin, vol. 64, no. 11, pp. 774–781, Jun. 2019, doi: 10.1016/J.SCIB.2019.04.029.
[285] Z. Wu et al., “Highly efficient deep-blue fluorescent OLEDs based on anthracene derivatives with a triplet–triplet annihilation mechanism,” Materials Chemistry Frontiers, vol. 5, no. 18, pp. 6978–6986, Sep. 2021, doi: 10.1039/D1QM00880C.
[286] “《擁抱暗黑》新書講座(憑書報名入場) | ACCUPASS.” https://www.accupass.com/event/2011030819584976501710 (accessed May 15, 2022).
[287] C. N. Li et al., “Improved performance of OLEDs with ITO surface treatments,” Thin Solid Films, vol. 477, no. 1–2, pp. 57–62, Apr. 2005, doi: 10.1016/J.TSF.2004.08.111.
[288] D. Lu, Y. Wu, J. Guo, G. Lu, Y. Wang, and J. Shen, “Surface treatment of indium tin oxide by oxygen-plasma for organic light-emitting diodes,” Materials Science and Engineering: B, vol. 97, no. 2, pp. 141–144, Jan. 2003, doi: 10.1016/S0921-5107(02)00435-X.
[289] A. Benor, S. Y. Takizawa, C. Ṕrez-Bolivar, and P. Anzenbacher, “Energy barrier, charge carrier balance, and performance improvement in organic light-emitting diodes,” Applied Physics Letters, vol. 96, no. 24, p. 243310, Jun. 2010, doi: 10.1063/1.3452344.
[290] “(PDF) Synthesis of side-chain polystyrenes for all organic solution processed OLEDs.” https://www.researchgate.net/publication/318529009_Synthesis_of_side-chain_polystyrenes_for_all_organic_solution_processed_OLEDs (accessed Jun. 30, 2022).
[291] F. Peng, W. Zhong, J. He, Z. Zhong, T. Guo, and L. Ying, “Effect of alkyl side chain length on the electroluminescent performance of blue light-emitting poly(fluorene-co-dibenzothiophene-S,S-dioxide),” Dyes and Pigments, vol. 187, p. 109139, Mar. 2021, doi: 10.1016/J.DYEPIG.2021.109139.
[292] T. Lee, C. E. Song, S. K. Lee, W. S. Shin, and E. Lim, “Alkyl-Side-Chain Engineering of Nonfused Nonfullerene Acceptors with Simultaneously Improved Material Solubility and Device Performance for Organic Solar Cells,” ACS Omega, vol. 6, no. 7, pp. 4562–4573, Feb. 2021, doi: 10.1021/ACSOMEGA.0C04495/ASSET/IMAGES/LARGE/AO0C04495_0007.JPEG.