簡易檢索 / 詳目顯示

研究生: 林有志
Yu-Chi Lin
論文名稱: Characterization of Serine Protease 23 and its potential roles in cancer invasion
絲氨酸蛋白酶23的功能定性以及其在癌症入侵中可能的角色探討
指導教授: 莊永仁
Yung-Jen Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 43
中文關鍵詞: 絲氨酸蛋白酶23癌症轉移癌症入侵
外文關鍵詞: PRSS23, metastasis, invasion
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cell migration and extracellular matrix degradation are important properties of the cancer cells. Several proteases are known to participate in these processes. In order to understand the molecular mechanisms underlying these processes, we identified a novel tumor-related protease, serine protease 23 (PRSS23/SPUVE), by SAGE database mining. The current findings have shown that the gene expression of PRSS23 is significantly up-regulated in various cancers such as breast, cervical and thyroid. Furthermore, the protein sequence analysis has predicted that PRSS23 is consisted of a hydrophobic signal peptide (hSP), a stem region which is annotated as N domain, and a trypsin-like proteolytic (P) domain.
    To characterize PRSS23, we first analyzed the function of each domain by expressing various truncated forms of PRSS23 protein. The Western blot showed that hSP was essential for full-length PRSS23 cleavage at a site within N domain. The confocal imaging showed that the cleaved PRSS23, P domain, could be transported from the cytoplasm into the nucleus. Moreover, we used GST-pull down assay to identify the interaction molecules of PRSS23. The assay revealed that the N domain was critical for PRSS23 to interact with β-actin, which may account for its transient stay in the cytoplasm. To investigate the functional roles of PRSS23, we knockdowned PRSS23 expression in the high invasive breast (MD-MB-21) and lung cancer (CL1-5) cell lines. The PRSS23 knockdown MDA-MB-231 cells were found to exhibit enhanced cell migration ability. Interestingly, the RNA expression of MMP9 and MT1-MMP (MMP14) were also increased in the PRSS23 knockdown MDA-MB-231 cells. Moreover, The PRSS23 knockdown CL1-5 cells could enhance their cell invasiveness. Based on these observations, my results supported that PRSS23 may play an important role in regulating cell mobility in cancer.


    細胞移動與胞外間質分解是癌細胞的重要特性。現今已經知道有許多蛋白酶參與此過程。在我們先前的研究中,利用比較不同血管內皮層細胞基因表達系列分析資料庫發現一可能與癌症相關的新穎蛋白酶-絲氨酸蛋白酶23。相關文獻指出絲氨酸蛋白酶23在乳癌、子宮頸癌與甲狀腺癌等癌症中被高度表現。此外,分析絲氨酸蛋白酶23的氨基酸序列後,發現其具有一疏水性胜肽訊號、一個莖柄功能域稱之為N功能域,以及一個胰蛋白酶相似功能域稱之為P功能域。文獻中對於此蛋白酶功能的瞭解至今仍不清楚。
    □畯怑漸□ル悛竁F個別功能域的方式來探討絲氨酸蛋白酶23的功能。由西方點墨吸漬結果指出,疏水性胜肽訊號對於截切絲氨酸蛋白酶23的全長前趨物是必須的。被截切的氨基酸序列可能位於N功能域間。由共軛焦影像分析指出被截切後的絲氨酸蛋白酶23會從細胞質內被運送到細胞核中。我們亦利用GST沈降試驗來確定與絲氨酸蛋白酶23有交互作用的分子,結果顯示絲氨酸蛋白酶23中的N功能域與肌動蛋白分子間具有交互作用。因此,我們認為全長的絲氨酸蛋白酶23會藉由與肌動蛋白分子間的作用,停留在細胞質中。為了進一步地研究絲氨酸蛋白酶23的功能,我們利用核酸干擾的方式來默化MDA-MB-231與CL1-5兩癌細胞株中的絲氨酸蛋白酶23的表現。結果顯示默化絲氨酸蛋白酶23後能增進MDA-MB-231的細胞移動,同時默化後亦提升基質金屬蛋白酶9與基質金屬蛋白酶14的基因表現。此外,默化絲氨酸蛋白酶23後的CL1-5亦能增加細胞的轉移。由上述的結果顯示絲氨酸蛋白酶23對於癌症細胞的移動特性扮演一重要的調控角色。

    中文摘要 Abstract 誌謝 Table of contents Chapter 1 Introduction Chapter 2 Materials and methods 2.1 Cell cultures 2.2 Construction of truncated PRSS23-related vectors 2.3 Construction of KRK motif mutant 2.4 Quantitative real-time PCR 2.5 Semi-quantitative RT-PCR 2.6 Transient transfection 2.7 Lentiviral short hairpin RNA–mediated knockdown of PRSS23 in CL1-5 and MDA-MB-231 cells. 2.8 Preparation of cell lysate and Western blot 2.9 Pull down assay of GST (Glutathione-S-Transferase) fusion protein 2.10 Immunocytochemistry 2.11 Wound healing assay 2.12 Transwell invasion assay Chapter 3 Results 3.1 The putative domain analysis of PRSS23 peptide sequence 3.2 The proposed post-translational enzymatic processing of PRSS23 3.3 The subcellular localizations of PRSS23 are domain-dependent in transient transfected HEK293 cells 3.4 Mutation of the KRK motif in P domain reduced the nuclear transportation. 3.5 The N domain of PRSS23 could interact with β-actin 3.6 PRSS23 knockdown enhanced cell mobility via up-regulated MMPs expression and altered cytoskeleton reorganization in MDA-MB-231 cells. Chapter 4 Discussion References List of Table List of Figures List of supplemental Figures

    1. Hedstrom, L. Serine protease mechanism and specificity. Chem Rev 102, 4501-24 (2002).
    2. Bennett, B. & Ratnoff, O.D. The normal coagulation mechanism. Med Clin North Am 56, 95-104 (1972).
    3. Davie, E.W., Fujikawa, K., Kurachi, K. & Kisiel, W. The role of serine proteases in the blood coagulation cascade. Adv Enzymol Relat Areas Mol Biol 48, 277-318 (1979).
    4. Hou, S., Maccarana, M., Min, T.H., Strate, I. & Pera, E.M. The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. Dev Cell 13, 226-41 (2007).
    5. Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H. & Ley, T.J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977-87 (1994).
    6. Shiver, J.W., Su, L. & Henkart, P.A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315-22 (1992).
    7. Yan, W., Wu, F., Morser, J. & Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97, 8525-9 (2000).
    8. Katunuma, N. & Kido, H. Biological functions of serine proteases in mast cells in allergic inflammation. J Cell Biochem 38, 291-301 (1988).
    9. Naukkarinen, A., Harvima, I.T., Aalto, M.L. & Horsmanheimo, M. Mast cell tryptase and chymase are potential regulators of neurogenic inflammation in psoriatic skin. Int J Dermatol 33, 361-6 (1994).
    10. Friedrich, R. et al. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 277, 2160-8 (2002).
    11. Ghersi, G. et al. The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 66, 4652-61 (2006).
    12. Kapadia, C., Ghosh, M.C., Grass, L. & Diamandis, E.P. Human kallikrein 13 involvement in extracellular matrix degradation. Biochem Biophys Res Commun 323, 1084-90 (2004).
    13. Ramani, V.C. & Haun, R.S. The extracellular matrix protein fibronectin is a substrate for kallikrein 7. Biochem Biophys Res Commun 369, 1169-73 (2008).
    14. Velasco, G., Cal, S., Quesada, V., Sanchez, L.M. & Lopez-Otin, C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem 277, 37637-46 (2002).
    15. Klezovitch, O. et al. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6, 185-95 (2004).
    16. Ossowski, L. In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J Cell Biol 107, 2437-45 (1988).
    17. Brodrick, J.W., Largman, C., Hsiang, M.W., Johnson, J.H. & Geokas, M.C. Structural basis for the specific activation of human enteropeptidase. J Biol Chem 253, 2737-42 (1978).
    18. Cho, E.G. et al. N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem 276, 44581-9 (2001).
    19. Jin, X. et al. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97, 1327-34 (2006).
    20. Desilets, A. et al. Mutation G827R in matriptase causing autosomal recessive ichthyosis with hypotrichosis yields an inactive protease. J Biol Chem 283, 10535-42 (2008).
    21. Miyakoshi, K. et al. The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biol Reprod 75, 823-35 (2006).
    22. Curry, T.E., Jr. & Osteen, K.G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24, 428-65 (2003).
    23. Ny, T., Wahlberg, P. & Brandstrom, I.J. Matrix remodeling in the ovary: regulation and functional role of the plasminogen activator and matrix metalloproteinase systems. Mol Cell Endocrinol 187, 29-38 (2002).
    24. Wahlberg, P., Nylander, A., Ahlskog, N., Liu, K. & Ny, T. Expression and localization of the serine proteases HtrA1, PRSS23, and PRSS35 in the mouse ovary. Endocrinology (2008).
    25. Pentecost, B.T., Bradley, L.M., Gierthy, J.F., Ding, Y. & Fasco, M.J. Gene regulation in an MCF-7 cell line that naturally expresses an estrogen receptor unable to directly bind DNA. Mol Cell Endocrinol 238, 9-25 (2005).
    26. Jarzab, B. et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res 65, 1587-97 (2005).
    27. Lopez-Otin, C. & Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7, 800-8 (2007).
    28. Cairns, R.A., Khokha, R. & Hill, R.P. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3, 659-71 (2003).
    29. Sahai, E. Illuminating the metastatic process. Nat Rev Cancer 7, 737-49 (2007).
    30. Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr Opin Cell Biol 17, 559-64 (2005).
    31. Simpson, J.C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 1, 287-92 (2000).
    32. Clark, H.F. et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13, 2265-70 (2003).
    33. Sigrist, C.J. et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3, 265-74 (2002).
    34. Gal, P. et al. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations. J Biol Chem 280, 33435-44 (2005).
    35. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5, Unit 5 6 (2006).
    36. Gorlich, D. & Mattaj, I.W. Nucleocytoplasmic transport. Science 271, 1513-8 (1996).
    37. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615-23 (1991).
    38. Qiu, J., Li, X., Frank, G. & Shen, B. Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem 276, 4901-8 (2001).
    39. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957-68 (2005).
    40. Nagase, H. & Woessner, J.F., Jr. Matrix metalloproteinases. J Biol Chem 274, 21491-4 (1999).
    41. Artym, V.V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K.M. & Mueller, S.C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66, 3034-43 (2006).
    42. Cooper, J.A. The role of actin polymerization in cell motility. Annu Rev Physiol 53, 585-605 (1991).
    43. Chu, Y.W. et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-60 (1997).
    44. Clark, I.M., Swingler, T.E., Sampieri, C.L. & Edwards, D.R. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40, 1362-78 (2008).
    45. Coser, K.R. et al. Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc Natl Acad Sci U S A 100, 13994-9 (2003).
    46. Moggs, J.G. et al. Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. J Mol Endocrinol 34, 535-51 (2005).
    47. Dumeaux, V. et al. Gene expression analyses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study. Breast Cancer Res 10, R13 (2008).
    48. van 't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-6 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE