研究生: |
王逸生 Wang, Yi-Sheng |
---|---|
論文名稱: |
基於鎖存可變電容單元優化數位控制震盪器以降低標準細胞元件庫全數位相位鎖定迴路的抖動 Jitter Minimization for a Cell-Based All-Digital Phase-Locked Loop by Optimization of Digital Controlled Oscillator Using Latch-Based Varactor Cells |
指導教授: |
黃錫瑜
Huang, Shi-Yu |
口試委員: |
李昆忠
Lee, Kuen-Jong 呂學坤 Lu, Shyue-Kung 黃宗柱 Huang, Tsung-Chu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 全數位相位鎖定迴路 、數位控制震盪器 、鎖存可變電容 、標準細胞元件庫 、抖動 |
外文關鍵詞: | ADPLL, DCO, Latch-Based Varactors, Cell-Based, Jitter |
相關次數: | 點閱:171 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於標準細胞元件庫設計的數位控制振盪器(DCO)是基於標準細胞元件庫設計的相位鎖定迴路(PLL)系統中的關鍵元件,對於晶片上高速時脈訊號生成至關重要。然而,以往的基於標準細胞元件庫設計的數位控制振盪器存在幾個缺點,包括非線性的數位控制振盪器周期特性、不均勻的時間分辨率以及輸出時脈周期間隙風險。在我們的工作中,我們通過使用鎖存可變電容單元來解決和克服這些問題。通過佈局後模擬,我們證明了我們的數位控制振盪器可以在所有五個工藝角落內與 -40° 到150°C 的極端溫度條件下保證無間隙的輸出時脈周期範圍。更重要的是,我們的設計在整個時脈周期範圍內保持穩定的1皮秒時間分辨率。
除了這些改進之外,當我們將數位控制振盪器集成到相位鎖定迴路中時,我們觀察到輸出時脈峰對峰的抖動從10.86皮秒顯著減少到6.07皮秒。這一抖動性能的改進突顯了我們設計的有效性。此外,我們的數位控制振盪器基於標準細胞元件庫設計,使其具有更大的靈活性和適應性。我們演示了一次製程工藝遷移,並編寫了一個綜合指南,以便於理解和實施不同製程工藝之間的轉換。這個指南是一個寶貴的資源,旨在幫助那些希望順利高效地進行製程工藝變遷的人。
A cell-based Digitally Controlled Oscillator (DCO) is a key component in cell-based Phase-Locked Loop (PLL) systems, crucial for on-chip high-speed clock generation. However, previous iterations of cell-based DCOs have faced several drawbacks, including a nonlinear DCO period profile, non-uniform time resolution, and the risk of output clock period gaps. In our work, we address and overcome these issues by employing latch-based varactor cells. Through post-layout simulation, we have demonstrated that our DCO can ensure a gapless output clock period range across all five process corners, even under the most extreme temperature conditions ranging from -40˚C to 150˚C. Furthermore, our design maintains a stable time resolution of 1ps across the entire clock period range.
In addition to these improvements, when we integrated our DCO into the PLL, we observed a significant reduction in the output clock peak-to-peak jitter, from 10.86ps down to 6.07ps. This improvement in jitter performance highlights the effectiveness of our design. Moreover, the cell-based design of our DCO allows for greater flexibility and adaptability. We successfully demonstrated a CMOS process migration of our proposed design and have compiled a comprehensive guideline to facilitate the understanding and implementation of transitions between different CMOS processes. This guideline is a valuable resource for those looking to navigate the complexities of CMOS process variations, ensuring smooth and efficient migrations.
[1] M. Combes, K. Dioury, and A. Greiner, “A Portable Clock Multiplier Generator Using Digital CMOS Standard Cells”, IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 958-965, Jul. 1996.
[2] T. Olsson and P. Nilsson, “A Fully Integrated Standard-Cell Digital PLL”, IEE Electron. Letters, vol. 37, pp. 211–212, Feb. 2001.
[3] T. Olsson and P. Nilsson, “A Digitally Controlled PLL for SoC Applications”, IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[4] C.-C. Chung and C.-Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation”, IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 347-351, Feb. 2003.
[5] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors”, IEEE Trans. on Circuits and System II, Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[6] D. Sheng, C. -C. Chung and C. -Y. Lee, “A Low-Power and Portable Spread Spectrum Clock Generator for SoC Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 6, pp. 1113-1117, June 2011.
[7] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An All-Digital Phase-Locked Loop with High-Resolution for SoC Applications”, Proc. of Int’l Symp. on VLSI Design, Automation and Test (VLSI-DAT), April 2006.
[8] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications”, IEEE Trans. on Circuits and System II, Express Briefs, vol. 54, no. 11, pp. 954-958, Nov. 2007.
[9] H.-J. Hsu and S.-Y. Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme”, IEEE Trans. on VLSI Systems, vol. 17, no. 11, 2009.
[10] S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1GHz ADPLL with a 1.25ps Minimum-Resolution Sub-Exponent TDC in 0.18μm CMOS”, IEEE Int. Solid-State Circuits Conf., pp. 482-483, Feb. 2010.
[11] P.-Y. Chao, C.-W. Tzeng, S.-C. Fang, C.-C. Weng and S.-Y. Huang, “Low-Jitter Code-Jumping for All-Digital PLL to Support Almost Continuous Frequency Tracking”, Proc. of IEEE Int’l Symp. on VLSI Design, Automation and Test (VLSI-DAT), April 2011.
[12] M.-H. Hsieh, L.-H. Chen, S.-I. Liu, and C. C.-P. Chen, “A 6.7MHz-to-1.24GHz 0.0318 mm2 Fast-Locking All-Digital DLL in 90nm CMOS”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 244-245, 2012.
[13] P.-Y. Chao, C.-W. Tzeng, S.-Y. Huang, C.-C. Weng, and S.-C. Fang, “Process Resilient Low-Jitter All-Digital PLL via Smooth Segment jumping”, IEEE Trans. on VLSI Systems (TVLSI), Vol. 21, No. 12, pp. 2240-2249, Dec. 2013.
[14] C.-W. Tzeng and S.-Y. Huang, “Parameterized All-Digital PLL Architecture and its Compiler to Support Easy Process Migration”, IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, Mar. 2014.
[15] J. G. Maneatis, “Why Synthesizable-Digital PLLs Are No Substitute for Hardened Mixed-Signal PLLs”, online article, May 22, 2019.
[16] Z.-H. Zhang, W. Chu, and S.-Y. Huang, “A Ping-Pong Methodology for Boosting the Resilience of Cell-Based Delay-Locked Loop”, IEEE Access, Vol. 7, pp. 97928-97937, Aug. 2019.
[17] C. -C. Chung, W. -S. Su and C. -K. Lo, “A 0.52/1 V Fast Lock-in ADPLL for Supporting Dynamic Voltage and Frequency Scaling”, IEEE Transactions on VLSI Systems, vol. 24, no. 1, pp. 408-412, Jan. 2016.
[18] F. Ahmad, G. Unruh, A. Lyer, P. -E. Su, S. Abdalla, B. Shen, M. Chambers and I. Fujimori, “A 0.5–9.5-GHz, 1.2-μs Lock-Time Fractional-N DPLL with ±1.25%UI Period Jitter in 16-nm CMOS for Dynamic Frequency and Core-Count Scaling”, IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 21-32, Jan. 2017.
[19] Y. -C. Su, K. -Y. Chang, Y. -T. Chin, C. -W. Chang and S. -J. Jou, “Synthesizable Injection-Locked Phase-Locked Loop with Multiphase Interlocking Digitally Controlled Oscillator Arrays”, IEEE International Conference on ASIC (ASICON), pp. 1-4, 2019.
[20] C. -C. Chang, Y. -T. Chin, H. A. Ibrahim, K. Y. Chang and S. -J. Jou, “A Low-Jitter ADPLL with Adaptive High-Order Loop Filter and Fine Grain Varactor Based DCO”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2021.