研究生: |
黃如玉 Ru-Yu Hwang |
---|---|
論文名稱: |
利用微生物共代謝三氯乙烯之研究 Cometabolic Biodegradation of Trichloroethylene by A Toluene-Oxidizing Microorganism |
指導教授: |
黃世傑
Shyh-Jye Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 共代謝 、三氯乙烯 、生物反應器 |
外文關鍵詞: | Cometabolic Biodegradation, Trichloroethylene, bioreactor |
相關次數: | 點閱:81 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用微生物以生物好氧處理的方式來共代謝三氯乙烯。在液體批次試驗結果可知,微生物最適反應及培養溫度為30℃,而最適培養pH值為7.0。因此,利用此條件以不同濃度的甲苯來共代謝濃度為0.98 mg/L、1.96 mg/L及3.93 mg/L之三氯乙烯,在不重覆添加甲苯的情況下,三組不同濃度之三氯乙烯皆是在甲苯與三氯乙烯的濃度比於38.6時。當在甲苯與三氯乙烯可共代謝的濃度比之下,若有與甲苯同濃度之苯存在,會造成微生物無法共代謝三氯乙烯,可知在有苯同時存在時,可能對微生物共代謝三氯乙烯有較大負面的影響。
在反應器方面,利用氣泡床生物反應器與活性碳生物濾床反應器來處理三氯乙烯及甲苯廢氣,發現在三相活性碳生物濾床之滯留時間愈長去除效率愈佳,而氣泡床生物反應器則在較短的滯留時間下,去除效率比三相活性碳生物濾床還要高,此外,在固定三氯乙烯濃度為0.3 g/m3,氣體流量控制在150 ml/min下,氣泡床生物反應器比三相活性碳生物濾床更可以較低的甲苯濃度來代謝最大量的三氯乙烯,有效地利用甲苯來共代謝三氯乙烯,但過高的甲苯濃度會有競爭抑制的現象產生,使去除效率及能力下降。而在相同的氣體流量下,固定甲苯濃度為2.1 g/m3,三相活性碳生物濾床在三氯乙烯負載量約在5~64 g/m3-hr,甚至超過時,至少有80~90%的去除效率,氣泡床生物反應器則在三氯乙烯負載量約在5~53 g/m3-hr時,可達90%以上的去除效率,但過高的三氯乙烯濃度則會影響其本身及甲苯的去除效率和去除能力。
Trichloroethylene (TCE) is readily mineralized under aerobic condition by cometabolism of non-specific oxygenase produced by toluene-oxidizing microorganisms. The objective of this study was to investigate biodegradation of TCE by a toluene-oxidizing microorganism in an aqueous-phase batch reactor, a bubble column bioreactor and a three phase activated carbon biofilter. The aqueous-phase batch experiments were conducted in which the concentration of TCE was held constant (0.98 mg/l, 1.96 mg/l or 3.93 mg/l) whereas the concentration of toluene was varied. The results showed that biodegradation of TCE was observed when the toluene/TCE concentration ratio was greater than 38.6. In contrast to TCE, nearly 100 % removal efficiency of toluene was observed in these experiments. Moreover, with mixtures of TCE, toluene and benzene, both toluene and benzene were biodegraded completely by the toluene-oxidizing microorganism, but TCE was not biodegraded.
The removal efficiency of gaseous TCE in the bubble column bioreactor was above 90 % at a retention time of 1.26 min while inlet concentrations of TCE and toluene were 2.06 g/m3 and 2.33 g/m3, respectively. For the three phase activated carbon biofilter, 70 % removal efficiency of gaseous TCE was obtained at the same operating condition. Thus, the bubble column had a better removal efficiency than the three phase carbon biofilter. At the gas flow rate of 150 g/m3-hr and a low TCE concentration of 0.3 g/m3, the bubble column bioreactor could use a lower toluene concentration to sustain the biomass growth and to maximize the TCE biodegradation than the three phase activated carbon biofilter. In addition, at the same gas flow rate and the toluene concentration of 2.1 g/m3, the removal efficiency of the bubble column bioreactor was 90% above for TCE loadings from 5~53 g/m3-hr, while that of the three phase activated carbon biofilter was 80~90% for TCE loadings from 5~64 g/m3-hr. However, the removal efficiency decreased at high concentrations of TCE or toluene, and the decrease in the bubble column was more dramatic than that in the three phase activated carbon biofilter. As a result, at high concentrations of TCE or toluene the three phase activated carbon biofilter, had a higher removal efficiency than the bubble column bioreactor.
Alvarez, P. J. J. and Vogel, T. M., 1991, Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries, Appl. Environ. Microbiol., 57: 2981-2985.
Annadurai, G., Balan, S. M., and Murugesan, T., 2000, Design of experiments in the biodegradation of phenol using immobilized Psudomonas pictorum (NICM-2077) on activated carbon, Biopro. Engrg., 22:101-107.
Arcangeli, J. P. and Arvin, E., 1997, Modeling of the Cometabolic Biodegradation of Trichloroethylene by Toluene-Oxidizing Bacteria in a Biofilm System, Environ. Sci. Technol., 31:3044-3052.
Bielefeldt, A. R. and Stensel, H. D., 1999, Modeling Competitive Inhibition Effects During Biodegradation of BTEX Mixtures, Wat. Res., 33:707-714.
Bouwer, E. J., Rittmann, B. E., and Mccarty, P. L., 1981, Anaerobic degradation of halogenated 1- and 2-carbon organic compounds, Environ. Sci. Technol., 15: 596-602.
Cox, C. D., Woo, H. J., and Robinson, K. G., 1998, Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase, Wat. Sci. Tech., 37:97-104.
Chang, H. L. and Alvarez-Cohen, L., 1995, Transformation Capacities of Chlorinated Organics by Mixed Cultures Enriched on Mathane, Propane, Toluene, or Phenol, Biotechnol. Bioeng., 45:440-449.
Chang, H. L. and Alvarez-Cohen, L., 1995, Model for the Cometabolic Biodegradation of Chlorinated Organics, Environ. Sci. Tech., 29:2357-2367.
Clapp, L. W., Regan, J. M., Ali, F., Newman, J. D., Park, J. K., and Noguera, D. R., 1999, Activity, Structure, and Stratification of Membrane-Attached Methanotrophic biofilms Cometabolically Degrading Trichloroethylene, Wat. Sci. Tech., 39:153-161.
El-Farhan, Y. H., Scow, K. M., Fan, S., and Rolston D. E., 2000, Bioremediation and Biodegradation, J. Environ. Qual., 29:778-786.
Ensley, B. D. and Kurisko, P. R., 1994, A Gas Lift Bioreactor for Removal of Contaminats From the Vapor Phase, Appl. Environ. Microbiol., 60: 285-290.
Gossett, J. M., 1987, Measurement of Henry’s Law constant for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21: 202-208.
Hecht, V., Brebbermann, D., Bremer, P., and Deckwer, W. D., 1995, Cometabolic Degradation of Trichloroethylene in a Bubble Column Bioscrubber, Biotechnol. Bioeng., 47:461-469.
Hopkins, G. D., Munakata, J., Semprini, L., and McCarty, P. L., 1993a, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Appl. Environ. Mirobiol., 59:2277-2285.
Jorio, H., Bibeau, L., Viel, G., and Heitz, M., 2000, Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance, Chemical. Engineering Journal., 76:209-221.
Kim, J. O., 1997, Gaseous TCE and PCE Removal by an Activated Carbon Biofilter, Biopro. Engrg., 16:331-337.
Kim, J. O., Terkonda, P. K., and Lee, S. D., 1998, Gaseous CAH removal by Biofiltration in presence and absence of a nonionic surfactant, Biopro. Engrg., 19:253-259.
Kenneth, F. R., Douglas, C. M., and Julia D. B. R., 2000, Biodegradation kinetics of Benzene, Toluene, and Phenol as Single and Mixed Substrates for Pseudomonas putida F1, Biotechnol. Bioeng., 69:385-400.
Landa, A. L., Sipkema, E. M., Weijma, J., Beenackers, A. A. C. M., Dolfing, j., and Janssem, D. B., 1994, Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate, Appl. Environ. Mirobiol., 60:3368-3374.
Lu, C.-J., Lee, C. M., and Chung, M.-S., 1998, The comparison of trichloroethylene removal rates by methane-and aromatic-utilizing microorganisms, Wat. Sci. Tech., 38:19-24.
Miller, R. E. and Guengerich, F. P., 1983, Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450, Cancer Res., 43: 1145-1152.
Misra, C. and Gupta, S. K., 2001, Hybrid Reactor for Priority Pollutant-Trichloroethylene Removal, Wat. Res., 35:160-166.
Murray, K. and Williams, P. A., 1974, Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida, J. Bacteriol., 117: 1153-1157.
Neal, A. and Loehr, R. C., 2000, Use of biiofilters and suspended-growth reactors to treat VOCs, Was. Manag., 20:59-68.
Nakano, Y., Hua, L. Q., Nishijima, W., Shoto, W., and Okada, M., 2000, Biodegradation of Trichloroethylene (TCE) Adsorbed on Granular Activated Carbon (GAC), Wat. Res., 34:4139-4142.
Nelson, M. J. K., Montgomery, S. O., Mahaffey, W. R., and Pritchard, P. H., 1987, Biodegradation of Trichloroethylene and Involvement of an Aromatic Biodegradative pathway, Appl. Environ. Microbiol., 53:949-954.
Nelson, M. J. K., Montgomery, S. O., and Pritchard, P. H., 1988, Trichloroethlyene metabolism by microorganisms that degrade aromatic compounds, Appl. Environ. Microbiol., 54:604-606.
Shields, M. S., Montgomery, S. O., Chapmen, P. J., Cuskey, S. M., and Pritchard, P. H., 1989, Novel pathwy of toluene catabolism in the trichloroethylene-degrading bacterium G4, Appl. Environ. Microbiol., 55:1624-1629.
Shields, M. S., Montgomery, S. O., Chapmen, P. J., Cuskey, S. M., and Pritchard, P. H., 1991, Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene, Appl. Environ. Microbiol., 57:1935-1941.
Shimomura, T., Suda, F., Uchiyama, H., and Yagi, O., 1997, Biodegradation of Trichloroethylene by Methylocystis SP. Strain M Immobilized in Gel Beads in a Fluidized-Bed Bioreactor, Wat. Res., 31:2383-2386.
Shurtiiff, M. M., Parkin, G. F., Weathers, L. J., and Gibson, D. T., 1996, Biotransformation of Trichloroethylene by Phenol-Induced Mixed Culture, J. Envir. Engrg., 122:581-588.
Sipkema, E. M., Koning, W. D., Ganzeveld, K. J., Janssen, D.B., and Beenackers, A. A. C. M., 2000, NADH-Regulated Metabolic Model for Growth of Methylosinus trichosporium OB3b. Cometabolic Degradation of Trichloroethene and Optimization of Bioreactor System Performance, Biotechnol. Prog., 16:189-198.
Syu, M. J. and Wang, Y. W., 1999, Immobilization materials mixed with activated sludge as column biofilters for the treatment of gaseous containing benzene and toluene, Biopro. Engrg., 21:230-244.
Tschantz, M. F., Bowman, J. P., Donaldson, T. L., Bienkowski, P. R., Strong-Gunderson, J. M., Palumbo, A. V., Herebes, S. E., and Sayler, G. S., 1995, Methanotrophic TCE Biodegradation in a Multi-Stage Bioreactor, Environ. Sci. Technol., 29:2079-2082.
Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbiol., 55: 2960-2964.
Wackett, L. P. and Gibson, D. T., 1988, Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas pudita F1, Appl. Environ. Microbiol., 54: 1703-1708
Winter, R. B., Yen, K. M., and Ensley, B. D., 1989, Efficient degradation of tri-chloroethtlene by a recombinant Escherichia coli, Biotechnology, 7:252-285
Woo, H. J., Sanseverino, J., Cox, C. D., Robinsion, K. G., and Sayler, G. S., 2000, The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1, J. Microbio. Methods, 40:181-191.
Yimu, D. and Scow, K. M., 1994, Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil, Appl. Environ. Microbiol., 60:2661-2665
Zylstra, G. J., Wackett, L. P., and Gibson, D. T., 1989, Trichloroethylene degration by Escherichia coli containing the colned Pesudeomonas putida F1 toluene dioxygenase genes, Appl. Environ. Microbiol., 55:3162-3166
行政院勞工委員會, 1997, 物質安全資料表及參考範例
蔡文田, 1992, 含氯有機溶劑之毒性及新陳代謝機制,工業污染防治,43:175-187
邱創汎、王耀銘、張坦卿, 1996, 空氣污染生物處理技術本土化之評析,工業污染防治, 58:111-124
郭家倫、曾迪華、黃雪莉,1998,好氧共代謝生物分解含氯脂肪族化合物之回顧與評析,國立中央大學環境工程學刊, 第五期
官知嫻, 1998, 苯環類分解菌共代謝三氯乙烯, 國立中興大學環境工程研究所碩士論文
唐修穆, 1995, 應用生物濾床處理含揮發性有機化合物(VOCs)廢氣之研究, 國立清華大學化學工程研究所博士論文。
陸德源, 2000, 利用甲苯分解菌處理含三氯乙烯廢氣效率之研究, 國立清華大學化學工程研究所碩士論文。
顏嘉玟, 2001, 利用微生物處理三氯乙烯廢氣之效率研究, 國立清華大學化學工程研究所碩士論文