簡易檢索 / 詳目顯示

研究生: 李昱賢
Lee, Yu-Hsien
論文名稱: 液態金屬次通道內燃料棒表面的溫度分布
Fuel Rod Surface Temperature Distributions in Liquid Metal Sub-channel Flows
指導教授: 施純寬
Shih, Chunkuan
口試委員: 施純寬
Shih, Chunkuan
白寶實
Pei, Bau-Shei
曾永信
Tseng, Yung-Shin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 計算流體力學燃料棒表面溫度液態金屬次通道偏心燃料棒
外文關鍵詞: CFD, rod surface temperature, liquid metal sub-channel flow, eccentric fuel rod
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本報告在探討液態金屬次通道內燃料棒表面的溫度分佈,分為兩種事故分析。首先為正常案例分析,其液態金屬在緊密排列的燃料棒三角形次通道內流動;另一種為偏心案例分析,此案例重點在於典型燃料棒組件裡中心燃料棒偏移的影響。本研究利用計算流體力學(Computational Fluid Dynamics)軟體FLUENT,在穩態熱傳導、完全發展流且考慮局部流體混合的條件下來進行模擬分析。
    在正常案例的分析裡,數值結果顯示在燃料棒表面的環向溫度分佈是不均勻的,可以想像此種現象在偏心燃料棒組件裡會更加嚴重。研究結果顯示燃料棒表面溫度在次通道空間較窄的區域會有較高的溫度,此現象在緊密排列的偏心燃料棒組件裡會更加明顯。即使中心燃料棒偏移的程度僅有一點點的距離,中心燃料棒表面的最大溫度差還是會高達54K左右,其燃料棒的直徑為4.7mm。這種現象是非常嚴重的,可能會產生不必要的熱應力,嚴重的話還會導致燃料元件失效。


    A numerical study on fuel rod surface temperature distributions in liquid metal cooled sub-channel flow is presented in this paper. There are two kinds of accident analysis. First is normal case, liquid metal is arranged to flow through triangular sub-channels in rather compact fuel rod lattice. Another accident is eccentric case, it is focused on the effects of misaligned central fuel rod in typical fuel rod cluster geometries. Numerical models based on FLUENT, a Computational Fluid Dynamics (CFD) commercial software, are developed to model steady state fuel thermal conductions, fully-developed turbulent convective flows, and local flow mixing.
    In normal case, the numerical results show the temperature distributions in the azimuthal direction are non-uniform. One could imagine that such situations will be more apparent when one has eccentric geometry in a misaligned fuel lattice. Numerical results show that fuel rod surface temperatures are higher for surfaces facing the narrow gap of the sub-channel. Situations are worse for cases where misaligned fuel rods exist in tightly packed fuel rod clusters. Even for a small amount of rod center deviation, such temperature differences can be as high as 54 K around a fuel rod whose diameter is only 4.7 mm. The situations could be very serious and might generate unnecessary thermal stresses and cause fuel failure.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究背景與目的 1 1.2 論文架構 3 第二章 液態金屬反應器介紹 4 2.1 液態金屬簡介 4 2.2 液態金屬反應器的發展與介紹 5 第三章 文獻探討 9 第四章 理論模式與數值方法 13 4.1 統御方程式 13 4.2 數值方法 15 4.2.1 離散求解過程 16 4.2.2 有限體積法 18 4.2.3 SIMPLE演算法 18 4.2.4 鬆弛方法 20 4.3 紊流模式 21 4.3.1 k-ε model模式介紹 22 4.3.2 k-ω model模式介紹 28 4.3.3 RSM model模式介紹 34 4.3.4 壁面模式 ( Wall Functions) 35 第五章 研究方法 37 第六章 模型建立 39 6.1 幾何模型與網格設計 39 6.1.1 正常案例模型與網格建立 41 6.1.2 偏心案例模型與網格建立 48 6.2 基本假設 55 第七章 結果與討論 56 7.1 正常案例模擬結果 56 7.2 中心燃料棒偏移事故之模擬分析 62 7.2.1 模擬結果 62 7.2.2 不同紊流模式結果比較 74 第八章 結論與建議 78 參考文獻 80

    1.Adapted from Energy, its use and the environment Hinrichs, Roger Saunders College Publishing Fort Worth © 1996
    2.Hofmann, F., 1970, “Velocity and temperature distribution in turbulent flow in sodium cooled fuel elements with eccentric geometry,” Liquid-Metal Heat Transfer and Fluid Dynamics, ASME, New York, pp. 69-75, 1970.
    3.W.J.OBERJOHN,1970, “Turbulent flow thermal-hydraulic characteristics of hexagonal pitch fuel assembles”, Liquid-Metal Heat Transfer and Fluid Dynamics, ASME, New York, pp. 30-40, 1970.
    4.X. Cheng and N.I. Tak ,2006, “CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels”.
    5.Chandra, L., Roelofs, F., Houkema, M., Jonker, B., 2009, “A stepwise development and validation of a RANS based CFD modeling approach for the hydraulic and thermal-hydraulic analyses of liquid metal flow in a fuel assembly,” Nuclear Engineering and Design, V. 239, 2009.
    6.施純寬, 林秉宏, 張庭碩, 李昱賢., “Spatial dependence of local heat transfer coefficients in liquid metal sub-channel flows,” European Nuclear Conf., Barcelona, Spain, May, 2010
    7.S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC, 1980.
    8.B. E. Launder and D. B. “Spalding. Lectures in Mathematical Models of Turbulence, ” Academic Press, London, England, (1972).
    9.J. O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York, 1975.
    10.V. Yakhot and S. A. Orszag. Renormalization Group Analysis of Turbulence: I.
    Basic Theory. Journal of Scientific Computing, 1(1):1–51, 1986.
    11.B. E. Launder and D. B. Spalding. The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering, 3:269–289, 1974.
    12.ANSYS Inc., “User’s Guide for ANSYS FLUENT 6.3” April, 2009.
    13.Tang, Yu S., Thermal analysis of liquid-metal fast breeder reactors ,1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE