簡易檢索 / 詳目顯示

研究生: 何建德
Chien-Te Ho
論文名稱: 貴重金屬(釕、銠、鈀)修飾銅鋅基質觸媒於室溫啟動催化氧化性蒸氣甲醇重組製氫反應之研究
The Study of Initiation of Oxidative Steam Reforming of Methanol for Hydrogen Production at Room Temperature over CuZn-based Catalysis Modified by Noble Metals(Ru, Rh and Pd)
指導教授: 黃鈺軫
Yuh-Jeen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 122
中文關鍵詞: 室溫啟動銅基質催化劑甲醇蒸氣氧化重組
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用共沉澱法製備支撐性Cu/ZnO觸媒、貴重金屬X/ZnO(X = Ru, Rh and Pd)觸媒和CuX/ZnO 觸媒,並以固定床觸媒測試四種不同甲醇重組為氫氣的反應 : 包含甲醇直接分解 (DM),甲醇蒸氣重組 (SRM),甲醇部分氧化 (POM) 和甲醇氧化性蒸氣重組反應 (OSRM)。測試結果發現,Cu/ZnO觸媒在POM與OSRM反應中顯示出此貴重金屬觸媒(X/ZnO)優異的活性;然而在POM和OSRM程序中,結合貴金屬的CuX/ZnO觸媒比Cu/ZnO觸媒在較低的反應溫度下啟動。CuRh/ZnO對於POM反應來說為最佳觸媒,且其可在423 K下展現高甲醇轉化率(CMeOH = 94.9%)、高氫氣選擇率(SH2 = 88.6%)和高一氧化碳選擇率(SCO > 10%)。此外,DM反應圖譜顯示CuX/ZnO觸媒比Cu/ZnO觸媒有更高的甲醇轉化傾向。這說明了在貴重金屬Ru、Rh和Pd加入之銅基質觸媒其POM反應中會引起甲醇直接分解而產生一氧化碳。
    自發性氫氣產生過程已在本研究中被討論,其中CuX/ZnO觸媒可在室溫下啟動POM反應而CuRh/ZnO與CuPd/ZnO觸媒也可在室溫下啟動OSRM反應。在OSRM反應下的最佳觸媒為結合2%鈀金屬的銅基質觸媒 (Cu30Pd2/ZnO),且Cu30Pd1/ZnO與Cu30Pd2/ZnO觸媒皆可在室溫下啟動OSRM反應。對於Cu30Pd2/ZnO觸媒來說,OSRM反應的最佳條件為水醇比 = 1.3、氧醇比 = 0.5、溫度 = 483 K且GHSV = 60000 h-1。對於Cu30Pd2/ZnO觸媒來說,PdZn合金與SZC粒子的出現可改良反應穩定度與氫氣選擇率。
    值得注意的是,在CuX/ZnO觸媒的同時監測X-ray吸收光譜中可顯示觸媒結構與反應活性的關係。同時監測X-ray吸收實驗清楚顯示出在POM與OSRM反應活性中,Cu(Ⅰ)物種為主要的活性位置。觸媒型態與表面特質可經由程溫技術與X-ray繞射實驗而鑑定。


    Contents Abstract in Chinese Contents Ⅰ List of Tables Ⅳ List of Figures Ⅴ Chapter 1 Background and Introduction 1 1-1 Use of the energy 1 1-2 Fuel cells 2 1-3 Advantages and applications of fuel cells 3 1-4 Proton exchange membrane fuel cell 7 1-5 Methanol reforming reactions 14 1-6 Paper review 15 1-7 Motivation and approaches 18 1-8 References 19 Chapter 2 Experimental Section 23 2-1 Chemicals and solutions 23 2-2 Inductively coupled plasma-Mass spectrometer (ICP-MS) 23 2-3 X-ray powder diffractometer (XRPD) 26 2-4 Transmission electron microscopy (TEM) 27 2-5 Vacuum system and nitrogen physical adsorption 28 2-6 Temperature programmed reduction (TPR) 31 2-7 Temperature programmed oxidation (TPO) 33 2-8 X-ray Absorption Spectroscopy (XAS) 33 2-9 Catalyst preparation 35 2-10 Catalytic activity 36 2-11 References 41 Chapter 3 Hydrogen production from methanol reforming on CuX/ZnO (X = Ru, Rh and Pd) Catalysts 42 3-1 Physical characteristics of catalysts 42 3-2 Temperature programmed reduction (TPR) characterization of fresh catalysts 43 3-3 X-ray diffraction (XRD) characterization of fresh catalysts 45 3-4 In-situ XANES spectra of CuX/ZnO catalysts 47 3-5 POM process over prepared catalysts 58 3-6 OSRM process over prepared catalysts 61 3-7 Cu K edge EXAFS analyze 67 3-8 Conclusions 71 3-9 References 71 Chapter 4 Effect of Pd Loading of CuZn-based Catalysts in the Oxidative Steam Reforming of Methanol 75 4-1 Characterization of prepared catalysts 76 4-2 Catalytic performances of CuPdx/ZnO at OSRM reaction 83 4-3 Catalytic performances of CuPd2/ZnO at various x and w in OSRM reaction 90 4-4 Conclusions 94 4-5 References 94 Chapter 5 Characterization of Redox Behaviors of Copper on CuZn-based Catalysts Promoted by Palladium 97 5-1 Physical properties of CuPdx/ZnO catalysts 98 5-2 Effect of palladium incorporation on reducibility of freshly calcined CuPd/ZnO catalyst 102 5-3 Effect of palladium incorporation on oxidation of reduced CuPd/ZnO catalysts 103 5-4 Determination of Cu dispersion on CuPd/ZnO catalyst 108 5-5 Durability of CuPd/ZnO catalyst for OSRM 116 5-6 Conclusions 118 5-7 References 119 Chapter 6 Conclusions 121 Lists of Tables Table 1-1 Summary of major differences of the fuel cell types 5 Table 1-2 Potential hydrogen storage materials 12 Table 1-3 Literature review for reforming methanol over Cu catalysts 17 Table 2-1 The chemicals used for this study 24 Table 2-2 Physical properties of copper, palladium, Ruthenium, Rhodium and Zinc oxide 25 Table 2-3 Experimental conditions of four reforming reactions over reduced CuX/ZnO catalysts 40 Table 3-1 Chemical composition and physical characteristics of prepared catalysts 44 Table 3-2 Speciation parameters (studied by in-situ EXAFS) of copper in CuRh/ZnO catalyst. 68 Table 4-1 Chemical composition and physical characteristics of prepared catalysts 78 Table 4-2 OSRM results of prepared catalysts of Pd/ZnO, Cu/ZnO and CuPd/ZnO and references 86 Table 4-3 The ignition temperature of OSRM of prepared CuPdx/ZnO catalysts 89 Table 5-1 Chemical composition and physical characteristics of prepared catalysts 99 Table 5-2 TPR results of CuPdx/ZnO catalysts 107 Table 5-3 TPO results of CuPdx/ZnO catalysts 109 List of Figures Figure 1-1 Chart to summarize the applications and main advantages of fuel cells of different types, and in different applications. 6 Figure 1-2 A chart of MEA consist of two electrodes, anode and cathode, and the polymer electrolyte. 8 Figure 1-3 A chart of MEA consist of two electrodes, anode and cathode, and the polymer electrolyte. 9 Figure 2-1 A chart of volumetric system. 30 Figure 2-2 A schematic diagram for the temperature programmed reduction system used in this study. 32 Figure 2-3 A schematic diagram for the reforming methanol system used in this study. 38 Figure 2-4 Schematic of in-situ X-ray absorption instrument. 39 Figure 3-1 TPR spectra of fresh catalysts of (a) Pd/ZnO (b) Ru/ZnO, and (c) Rh/ZnO. 48 Figure 3-2 TPR spectra of fresh catalysts of (a) Cu/ZnO, (b) CuPd/ZnO, (c) CuRu/ZnO and (d) CuRh/ZnO. 49 Figure 3-3 XRD patterns of fresh X/ZnO catalysts. 50 Figure 3-4 XRD patterns of fresh CuX/ZnO catalysts. 51 Figure 3-5 The XANES spectra of reduction of (a) CuRh/ZnO, (b) CuRu/ZnO and (c) CuPd/ZnO at 523 K. 53 Figure 3-6 The compound fits of in-situ XANES spectra of (a) CuRh/ZnO, (b) CuRu/ZnO and (c) CuPd/ZnO during catalytic POM reaction at 298 K. The dotted line denotes the best fits of XANES spectra. 54 Figure 3-7 The compound fits of in-situ XANES spectra of (a) CuRh/ZnO, (b) CuPd/ZnO and (c) CuRu/ZnO during catalytic POM reaction at 473 K. The dotted line denotes the best fits of XANES spectra. 55 Figure 3-8 The compound fits of in-situ XANES spectra of (a) CuRh/ZnO, (b) CuRu/ZnO and (c) CuPd/ZnO during catalytic OSRM reaction at 403 K. The dotted line denotes the best fits of XANES spectra. 56 Figure 3-9 The compound fits of in-situ XANES spectra of (a) CuRh/ZnO, (b) CuRu/ZnO and (c) CuPd/ZnO during catalytic OSRM reaction at 503K. The dotted line denotes the best fits of XANES spectra. 57 Figure 3-10 The temperature profile of catalytic activity in the partial oxidation of methanol over Cu/ZnO (□), CuRh/ZnO (●), CuRu/ZnO (▲) and CuPd/ZnO (◆) catalysts. 59 Figure 3-11 The temperature profile of catalytic activity in the decomposition of methanol over Cu/ZnO (□), CuRh/ZnO (●), CuRu/ZnO (▲) and CuPd/ZnO (◆) catalysts. 62 Figure 3-12 The temperature profile of catalytic activity in the oxidative steam reforming of methanol over Rh/ZnO (●), Ru/ZnO (▲) and Pd/ZnO (◆) catalysts. 64 Figure 3-13 The temperature profile of catalytic activity in the oxidative steam reforming of methanol over Cu/ZnO (□), CuRh/ZnO (●), CuRu/ZnO (▲) and CuPd/ZnO (◆) catalysts. 65 Figure 3-14 XRD patterns of fresh catalysts after reduced by 10% H2/N2, 30 ml/min at 523 K for 1 hr ; (a) CuRh/ZnO, (b) CuPd/ZnO and (c) CuRu/ZnO. 66 Figure 4-1 XRD patterns of fresh CuPdx/ZnO catalysts. 79 Figure 4-2 The detailed XRD patterns of fresh CuPdx/ZnO catalysts at 2□ dispersed at 380 ~ 580. 80 Figure 4-3 TPR spectra of fresh catalysts of (a) CuPd1/ZnO, (b) CuPd2/ZnO and (c) CuPd4/ZnO. 82 Figure 4-4 Comparison of OSRM for Cu/ZnO (□), Pd/ZnO (▲) and Cu30Pd2/ZnO (●) as a function of temperature (w = 1.3, x = 0.25, GHSV = 60000 h-1). 85 Figure 4-5 A temperature profile of CMeOH, SCO and RH2 from OSRM reaction over CuPd1/ZnO (□), CuPd2/ZnO (●) and CuPd4/ZnO (▲) catalysts. 87 Figure 4-6 Effect of temperature on methanol conversion,CO selectivity and hydrogen yield at various steam to methanol molar ratio for CuPd2/ZnO catalyst (OSRM reaction, O/M = 0.25, P = 1 atm). 91 Figure 4-7 Effect of temperature on methanol conversion, CO selectivity and hydrogen yield at various oxygen to methanol molar ratio for CuPd2/ZnO catalyst (a) Methanol conversion (b) CO selectivity and (c) RH2 ( OSRM reaction, S/M = 1.3, P = 1 atm ). 93 Figure 5-1 The detailed XRD patterns of fresh CuPd1/ZnO and CuPd4/ZnO catalysts at 2□ dispersed at 200 ~ 400. 101 Figure 5-2 TPR spectra of freshly calcined Pd/ZnO and CuX/ZnO catalysts. 104 Figure 5-3 TPO spectra of reduced (a) Cu/ZnO and (b) CuPd2/ZnO. 105 Figure 5-4 TPR reduction spectra of samples oxidized at T0 = 150 K. 106 Figure 5-5 Schematic models for reduction phenomena observed from TPR of CuPdx/ZnO catalysts. (A) Reduction of a CuO crystallite on freshly calcined CuPdx/ZnO: (a) a CuO crystallite; (b) CuiO was reduced to Cui at Tr = 380 ~ 440 K; and (c) a complete reduction of CuO at Tr = 440 ~ 495 K. (B) Reduction of a Cus2O layer formed by oxygen chemisorption. (a) A Cus2O crystallite; (b) Cup2O was reduced at Tr = 360 ~ 420 K; (c) A complete reduction of Cus2O at Tr = 420 ~ 490 K. 110 Figure 5-6 Schematic model for oxidation of Cu to CuO crystallites dispersed on CuPdx/ZnO catalysts upon increasing To of oxidation treatment. (a) A dispersed Cu crystallite; (b) Oxidation of Cus at To = 123 ~ 223 K; (c) Oxidation of Cui at To = 223 ~ 323 K; (d) A complete oxidation of Cu crystallite at To = 323 ~ 623 K. 111 Figure 5-7 TPR spectra of reduced the Cu/ZnO with oxidation treatment at T0 = (a) 298 K, (b) 163 K and (c) 148 K. 113 Figure 5-8 TPR spectra of reduced the CuPd/ZnO with oxidation treatment at T0 = (a) 178 K, (b) 158 K, (c) 148 K, (d) 128 K and (e) 108 K. 114 Figure 5-9 Time-on-stream stability test of CuPd/ZnO catalyst (T = 473 K, GHSV = 60000 h-1, x = 0.25 and w = 1.3). 117

    [1] P.J. de Wild, M.J.F.M. Verhaak, “Catalytic production of hydrogen from methanol” Catal. Today 60 (2000) 3-10.
    [2] S. Velu, K. Suzuki, M. P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts” Appl. Catal. A 213 (2001) 47-63.
    [3] S. Velu, K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides” Catal. Lett. 62 (1999) 159-167.
    [4] S. Velu, K. Suzuki, T. Osaki, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells” Chem. Commun. (1999) 2341-2342.
    [5] J. P. Shen, C. Song, “Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells” Catal. Today 77 (2002) 89-98.
    [6] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe. “Hydrogen production by oxidative methanol reforming on Pd/ZnO” Appl. Catal., A 283 (2005) 125-135.
    [7] R. Perez-Hernandez, A. Gutierrez-Martinez, C.E. Gutierrez-Wing. “Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol” Int. J. Hydrogen Energy 32 (2007) 2888-2894.
    [8] V. Agarwal, S. Patel, K.K. Pant, “H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling” Appl. Catal. A 279 (2005) 155-164.
    [9] LF. Brown, “A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles” Int. J. Hydrogen Energy 26 (2001) 381-397.
    [10] R. F. Horng, “Effect of input energy on the cold start characteristics of an EHC with heat storing material on a motorcycle engine” Energy Convers. Manage. 46 (2005) 1043-1057.
    [11] M. M. Günter, T. Ressler, R. E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy” J. Catal. 203 (2001) 133-149.
    [12] Z. Wang, W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation” Int. J. Hydrogen Energy 28 (2003) 151-158.
    [13] K. Gericke, A. Hävecker, S. Niedrig, T. Schlögl, “Probing the electronic structure of an active catalyst surface under high-pressure reaction conditions: the oxidation of methanol over copper” Catal. Lett. 66 (2000) 215-220.
    [14] T. L. Reitz, P. L. Lee, K. F. Czaplewski, J. C. Lang, K. E. Popp, H. H. Kung, “Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction” J. Catal. 199 (2001) 193-201.
    [15] G. Meitzner, E. Iglesia, “New insights into methanol synthesis catalysts from X-ray absorption spectroscopy” Catal. Today 53 (1999) 433-441.
    [16] Y. X. Yang, R. K. Singh, P. A. Webley, “Hydrogen adsorption in transition metal carbon nano-structures” Adsorpt. Sci. Technol. 14 (2008) 265-274.
    [17] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals.” Catal Today 36 (1997) 45-56.
    [18] L. C. Chung, “Preparation and characterization of Cu/CeO2-ZnO catalysts.” phD. Dissertation, National Tsing Hua Unversity (2008) 49-72.
    [19] T. W. Wang, “Production of hydrogen from methanol reforming over CuZn-based catalysts promoted by manganese” MS. Thesis, National Tsing Hua University (2008) 78.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE