簡易檢索 / 詳目顯示

研究生: 盧彥璋
Lu, Yen-Chang
論文名稱: 發展新穎GBP的syndecan-1靶向藥物治療口腔鱗狀細胞癌
Development of novel GBP-based syndecan-1 targeting drug for oral squamous carcinoma
指導教授: 張大慈
Chang, Margaret Dah-Tsyr
口試委員: 林玉俊
Lin, Yu-Chun
王慧菁
Wang, Hui-Ching
陳炯東
Chen, Chiung-Tong
閻紫宸
Yen, Tzu-Chen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 93
中文關鍵詞: 糖胺多醣結合胜肽蛋白多糖-膜錨定硫酸乙酰肝素蛋白多醣口腔鱗狀細胞癌
外文關鍵詞: GBP, HSPG, oral squamous cell carcinoma
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主角為具有細胞穿透和上皮腫瘤靶向活性的糖胺多醣結合胜肽(GBP),其為能識別細胞表面帶負電荷的組分、並將各種分子貨物運輸到活細胞中的10個氨基酸組成的短胜肽。 Syndecan 1(SDC1,亦稱CD138)是一種關鍵的蛋白多糖-膜錨定硫酸乙酰肝素蛋白多醣(HSPG),主要功能為維持細胞形態和與周圍微環境的相互作用。本研究首先以抗SDC1的抗體辨識,探討SDC1於鱗狀上皮細胞癌(squamous cell carcinoma,SCC)之表現差異,再以化學染劑共價鍵結的GBP: Dye-GBP標靶口腔和肺癌SCC細胞之SDC1。本研究發現Dye-GBP可特異性地造成口腔鱗狀細胞癌和肺鱗狀細胞癌細胞株之細胞毒性,但對於成纖維細胞和其他上皮腺癌細胞則無影響。由於Dye-GBP可藉由細胞表面膜錨定硫酸乙酰肝素蛋白多醣進入細胞,實驗結果發現口腔癌細胞之細胞表面高分子量的糖基化SDC1蛋白表現較其他細胞株高,顯示SDC1糖基化對於Dye-GBP引發的細胞毒性扮演重要角色。接著,本研究建立含有口腔鱗狀細胞癌細胞和成纖維細胞的3D球體模型,發現以Dye-GBP處理亦明顯導致細胞凋亡。同時,免疫螢光染色及免疫組織化學染色實驗發現Dye-GBP訊號與SDC1共定位並可滲入細胞質。此外,觀察口腔鱗狀細胞癌的人組織陣列時,發現癌症後期分泌型SDC1在腫瘤細胞外基質(ECM)聚集較多,表示在腫瘤進展期SDC1可能從細胞膜脫落並在細胞外基質中聚集。本研究結果顯示SDC1在介導Dye-GBP內吞以發揮細胞毒性具關鍵作用,SCC的靶向治療具潛在應用價值,可滿足目前尚缺乏的醫療需求。


    A glycosaminoglycan-binding cell penetrating peptide (GBP) with cell penetrating and epithelial tumor targeting activities is a 10-amino acid peptide that recognizes negatively charged components on epithelial cell surface and transports various molecular cargos into living cells. Syndecan 1 (SDC1, also named as CD138) is a key membrane-anchored heparan sulfate proteoglycan (HSPG) involving maintenance of cell morphology and interaction with surrounding microenvironment. In this study SDC1 alteration in oral squamous cell carcinoma (OSCC) was initially profiled by anti-SDC1 antibody, followed by chemical conjugated GBP (Dye-GBP). Interestingly, Dye-GBP induced cytotoxicity specifically in OSCC and lung SCC (LSCC) but not fibroblast and other epithelial cancer cell lines. Coordinately, OSCC expressed more membrane-bound high molecular weight SDC1 than LSCC, implying that SDC1 glycosylation played an important role in Dye-GBP-mediated cytotoxicity. In addition, a 3D hetero-spheroid model containing OSCC cells and fibroblasts was established and treated with Dye-GBP, apparent apoptosis was also observed. Meanwhile, GBP co-localization with SDC1 and penetration into cytoplasmic compartments of OSCC were detected employing immunofluorescence (IF) staining and immunohistochemistry (IHC) staining. Furthermore, more accumulation of secreted SDC1 in tumor extracellular matrix (ECM) in OSCC human tissue arrays was observed, suggesting that SDC1 might be shed from cell membrane and aggregated in microenvironment during tumor progression. Taken together, these results indicate that SDC1 plays a critical role in mediating GBP endocytosis to exert cytotoxicity, which in turn might fulfill unmet medical need leading to potential application for target therapy of SCC in near future.

    Chapter 1 Introduction----1 1-1 Current status of oral and lung squamous cell carcinoma----1 1-2 Cellular phenotype of oral epithelial cells---2 1-3 Roles of heparan sulfate proteoglycans (HSPGs) in tumor microenvironment---3 1-4 HSPG as a biomarker---8 1-5 Tetramethylrhodamine-conjugated GAG-binding peptide---11 1-6 Photodynamic therapy---12 1-7 Abnormal expression of proteoglycans and glycosaminoglycans in cancer progression--- 13 Chapter 2 Hypothesis and specific aims---16 Aim 1. Investigation of functional roles of SDC1 in oral SCC---17 Aim 2. Characterization of biological functions of TMR-GBP in cancer cells---17 Aim 3. Identification of intracellular targets of GBP---17 Chapter 3 Materials and Methods---18 3-1 Cells and cell culture---18 3-2 In vitro cell viability assay---18 3-3 Western blotting analysis---19 3-4 Hetero-spheroid formation---20 3-5 Immunofluorescence staining assay---20 3-6 Terminal deoxynucleotidyl transferase (TdT)- mediated dUTP nick end labeling (TUNEL)--- 21 3-7 Cellular uptake of various peptides on OSCC---21 3-8 Transient transfection---22 3-9 Tissue microarray (TMA) analysis---22 3-10 Immunohistochemistry (IHC) staining---23 3-11. Double immunohistochemistry (IHC) staining---25 3-15 Statistical analysis---25 Chapter 4 Results ---26 4-1 TMR-GBP effects in different cell lines---26 4-2 Cellular uptake of TMR-GBP and derivative peptides in Ca922 and OECM-1 cells ---27 4-3 SDC1 expression in various cells---28 4-4 Induced cell death of OSCC hetero-spheroid upon treatment with TMR-GBP---29 4-5 GBP co-localization with SDC1 in Ca922 cells---31 4-6 Temperature-dependent endocytosis of FITC-GBP in OSCC---31 4-7 Cytotoxic effects of TMR-GBP in SDC1-overexpressed cell line---32 4-8 Expression pattern of SDC1 and TMR-GBP in human head and neck SCC tissue microarray (TMA)--- 32 4-9 Effect of HS on TMR-GBP induced cytotoxicity in OSCC---34 4-10 Alternation of SDC1 from tumor cell to stroma in HNSCC tumor tissues---35 Chapter 5 Discussion---36 5-1 Oral and lung squamous cell carcinoma are more sensitive to TMR-GBP---36 5-2 TMR-GBPW4R is sensitive to OSCC cell lines except Ca922---38 5-3 Correlation between reduction of SDC1 expression in OSCC---39 5-4 TMR-GBP localization in OSCC---41 5-5 Quality control of TMR-GBP is important for efficacy---41 5-6 GBP modification and function---42 Figures---43 Figure 1 Cellular effects of TMR-GBP in SCC---44 Figure 2 Cellular localization of TMR-GBP in OSCC---46 Figure 3 SDC1 expression in oral and lung SCC---47 Figure 4 Apoptotic effects of TMR-GBP in Ca922 heterospheroid---49 Figure 5 Apoptotic effects of TMR-GBP in OECM-1 heterospheroid---52 Figure 6 Colocalization of GBP and SDC1 in Ca922---54 Figure 7 Temperature-dependent endocytosis of GBP in Ca922 cells---56 Figure 8 Temperature-dependent endocytosis of GBP in OECM-1 cells---58 Figure 9 Cellular effect of TMR-GBP in A549 overexpressed SDC1---59 Figure 10 Expression of SDC1 in head and neck SCC and normal tissues---62 Figure 11 Expression of SDC1 and TMR-GBP in head and neck SCC and normal tissues--- 67 Figure 12 SDC1 and TMR-GBP signals in head and neck SCC and normal tissues---70 Figure 13 Effection of SDC1 on TMR-GBP toxicity to Ca922 and OECM-1 cells---71 Figure 14 Alteration of SDC1 expression in HNSCC cancer progression ---72 Figure 15 Correlation between SDC1 and GBP conjugates against SCC---73 Reference---74 Tables---87 Table 1 Sequence and molecular weights of synthetic peptides---87 Table 2 List of peptides and concentration---87 Table 3 List of reagents and antibodies---88 Table 4 Buffer and solution preparation---89 Table 5 List of cell line and cell type---89 Table 6 IC50 of TMR-GBPs in different cancer cell lines---90 Table 7 Correlation between reduction of SDC1 and clinico-pathological parameters---90 Table 8 Summary of GBP modification and function ---91 Appendix---93

    1. Yan, W., Wistuba, II, M.R. Emmert-Buck, and H.S. Erickson, Squamous Cell Carcinoma - Similarities and Differences among Anatomical Sites. Am J Cancer Res, 2011. 1(3): p. 275-300.
    2. Chen, Y.J., J.T. Chang, C.T. Liao, H.M. Wang, T.C. Yen, C.C. Chiu, Y.C. Lu, H.F. Li, and A.J. Cheng, Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14.
    3. Sankaranarayanan, R., K. Ramadas, H. Amarasinghe, S. Subramanian, and N. Johnson, Oral Cancer: Prevention, Early Detection, and Treatment, in Cancer: Disease Control Priorities, Third Edition (Volume 3), H. Gelband, et al., Editors. 2015: Washington (DC).
    4. Kao, S.Y. and E. Lim, An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res, 2015. 18(1): p. 7-12.
    5. Krishna Rao, S.V., G. Mejia, K. Roberts-Thomson, and R. Logan, Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pac J Cancer Prev, 2013. 14(10): p. 5567-77.
    6. Rivera, C., Essentials of oral cancer. Int J Clin Exp Pathol, 2015. 8(9): p. 11884-94.
    7. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
    8. Margaretten, N.C. and H.R. Witschi, Effects of hyperoxia on growth of experimental lung metastasis. Carcinogenesis, 1988. 9(3): p. 433-9.
    9. Alamo, L., R. Padron, R. Craig, and C. Caputo, [A method for quick freezing of muscles in tetanic contraction]. Acta Cient Venez, 1987. 38(4): p. 513-4.
    10. Bratt, P., M.M. Anderson, B. Mansson-Rahemtulla, J.W. Stevens, C. Zhou, and F. Rahemtulla, Isolation and characterization of bovine gingival proteoglycans versican and decorin. Int J Biochem, 1992. 24(10): p. 1573-83.
    11. Groeger, S. and J. Meyle, Oral Mucosal Epithelial Cells. Front Immunol, 2019. 10: p. 208.
    12. Squier, C.A. and M.J. Kremer, Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr, 2001(29): p. 7-15.
    13. Gartner, L.P., Oral anatomy and tissue types. Semin Dermatol, 1994. 13(2): p. 68-73.
    14. Whitelock, J. and J. Melrose, Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip Rev Syst Biol Med, 2011. 3(6): p. 739-51.
    15. Chen, C.J., K.C. Tsai, P.H. Kuo, P.L. Chang, W.C. Wang, Y.J. Chuang, and M.D. Chang, A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. Biomed Res Int, 2015. 2015: p. 237969.
    16. Knelson, E.H., J.C. Nee, and G.C. Blobe, Heparan sulfate signaling in cancer. Trends Biochem Sci, 2014. 39(6): p. 277-88.
    17. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7).
    18. Rapraeger, A.C., A. Krufka, and B.B. Olwin, Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science, 1991. 252(5013): p. 1705-8.
    19. Yayon, A., M. Klagsbrun, J.D. Esko, P. Leder, and D.M. Ornitz, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991. 64(4): p. 841-8.
    20. Lim, H.C., H.A. Multhaupt, and J.R. Couchman, Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer, 2015. 14: p. 15.
    21. Yang, Y., V. MacLeod, Y. Dai, Y. Khotskaya-Sample, Z. Shriver, G. Venkataraman, R. Sasisekharan, A. Naggi, G. Torri, B. Casu, I. Vlodavsky, L.J. Suva, J. Epstein, S. Yaccoby, J.D. Shaughnessy, Jr., B. Barlogie, and R.D. Sanderson, The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 2007. 110(6): p. 2041-8.
    22. Szatmari, T., R. Otvos, A. Hjerpe, and K. Dobra, Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. Dis Markers, 2015. 2015: p. 796052.
    23. Hassan, H., B. Greve, M.S. Pavao, L. Kiesel, S.A. Ibrahim, and M. Gotte, Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J, 2013. 280(10): p. 2216-27.
    24. Altemeier, W.A., S.Y. Schlesinger, C.A. Buell, W.C. Parks, and P. Chen, Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly. J Cell Sci, 2012. 125(Pt 21): p. 5188-95.
    25. Park, H., Y. Kim, Y. Lim, I. Han, and E.S. Oh, Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem, 2002. 277(33): p. 29730-6.
    26. Hrabar, D., G. Aralica, M. Gomercic, N. Ljubicic, B. Kruslin, and D. Tomas, Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res, 2010. 30(7): p. 2749-53.
    27. Couchman, J.R., C.M. Klass, and A. Woods, 31 control of extracellular matrix assembly by syndecan-2 proteoglycan. J Histochem Cytochem, 1999. 47(12): p. 1649C-1650.
    28. Ethell, I.M. and Y. Yamaguchi, Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol, 1999. 144(3): p. 575-86.
    29. Ethell, I.M., F. Irie, M.S. Kalo, J.R. Couchman, E.B. Pasquale, and Y. Yamaguchi, EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron, 2001. 31(6): p. 1001-13.
    30. Chen, L., C. Klass, and A. Woods, Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem, 2004. 279(16): p. 15715-8.
    31. Tkachenko, E., J.M. Rhodes, and M. Simons, Syndecans: new kids on the signaling block. Circ Res, 2005. 96(5): p. 488-500.
    32. Raulo, E., M.A. Chernousov, D.J. Carey, R. Nolo, and H. Rauvala, Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem, 1994. 269(17): p. 12999-3004.
    33. Pacifici, M., T. Shimo, C. Gentili, T. Kirsch, T.A. Freeman, M. Enomoto-Iwamoto, M. Iwamoto, and E. Koyama, Syndecan-3: a cell-surface heparan sulfate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. J Bone Miner Metab, 2005. 23(3): p. 191-9.
    34. Carvallo, L., R. Munoz, F. Bustos, N. Escobedo, H. Carrasco, G. Olivares, and J. Larrain, Non-canonical Wnt signaling induces ubiquitination and degradation of Syndecan4. J Biol Chem, 2010. 285(38): p. 29546-55.
    35. Elfenbein, A. and M. Simons, Syndecan-4 signaling at a glance. J Cell Sci, 2013. 126(Pt 17): p. 3799-804.
    36. Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield, Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol, 1989. 108(4): p. 1547-56.
    37. Fares, J., R. Kashyap, and P. Zimmermann, Syntenin: Key player in cancer exosome biogenesis and uptake? Cell Adh Migr, 2017. 11(2): p. 124-126.
    38. Cerezo-Magana, M., A. Bang-Rudenstam, and M. Belting, The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment. Semin Cancer Biol, 2019.
    39. Zimmermann, P., Z. Zhang, G. Degeest, E. Mortier, I. Leenaerts, C. Coomans, J. Schulz, F. N'Kuli, P.J. Courtoy, and G. David, Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell, 2005. 9(3): p. 377-88.
    40. Li, R., J. Xie, H. Wu, G. Li, J. Chen, Q. Chen, L. Wang, and B. Xu, Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus. Biochem Biophys Res Commun, 2016. 474(1): p. 15-21.
    41. Lambaerts, K., S.A. Wilcox-Adelman, and P. Zimmermann, The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol, 2009. 21(5): p. 662-9.
    42. Soukka, T., J. Pohjola, P. Inki, and R.P. Happonen, Reduction of syndecan-1 expression is associated with dysplastic oral epithelium. J Oral Pathol Med, 2000. 29(7): p. 308-13.
    43. Inki, P., H. Joensuu, R. Grenman, P. Klemi, and M. Jalkanen, Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br J Cancer, 1994. 70(2): p. 319-23.
    44. Ramani, V.C., P.S. Pruett, C.A. Thompson, L.D. DeLucas, and R.D. Sanderson, Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem, 2012. 287(13): p. 9952-61.
    45. Stewart, M.D., V.C. Ramani, and R.D. Sanderson, Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem, 2015. 290(2): p. 941-9.
    46. Nackaerts, K., E. Verbeken, G. Deneffe, B. Vanderschueren, M. Demedts, and G. David, Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer, 1997. 74(3): p. 335-45.
    47. Anttonen, A., M. Kajanti, P. Heikkila, M. Jalkanen, and H. Joensuu, Syndecan-1 expression has prognostic significance in head and neck carcinoma. British Journal of Cancer, 1999. 79(3-4): p. 558-564.
    48. Munesue, S., Y. Kusano, K. Oguri, N. Itano, Y. Yoshitomi, H. Nakanishi, I. Yamashina, and M. Okayama, The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J, 2002. 363(Pt 2): p. 201-9.
    49. Popovic, A., A. Demirovic, B. Spajic, G. Stimac, B. Kruslin, and D. Tomas, Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostatic Dis, 2010. 13(1): p. 78-82.
    50. Pruessmeyer, J., C. Martin, F.M. Hess, N. Schwarz, S. Schmidt, T. Kogel, N. Hoettecke, B. Schmidt, A. Sechi, S. Uhlig, and A. Ludwig, A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J Biol Chem, 2010. 285(1): p. 555-64.
    51. Dedes, P.G., C. Gialeli, A.I. Tsonis, I. Kanakis, A.D. Theocharis, D. Kletsas, G.N. Tzanakakis, and N.K. Karamanos, Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim Biophys Acta, 2012. 1820(12): p. 1926-39.
    52. Naba, A., K.R. Clauser, S. Hoersch, H. Liu, S.A. Carr, and R.O. Hynes, The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics, 2012. 11(4): p. M111 014647.
    53. Kawahara, R., D.C. Granato, C.M. Carnielli, N.K. Cervigne, C.E. Oliveria, C. Rivera, S. Yokoo, F.P. Fonseca, M. Lopes, A.R. Santos-Silva, E. Graner, R.D. Coletta, and A.F. Paes Leme, Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS One, 2014. 9(12): p. e115004.
    54. Tanaka, Y., R. Tateishi, and K. Koike, Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci, 2018. 19(10).
    55. Chute, C., X. Yang, K. Meyer, N. Yang, K. O'Neil, I. Kasza, K. Eliceiri, C. Alexander, and A. Friedl, Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res, 2018. 20(1): p. 66.
    56. Parimon, T., R. Brauer, S.Y. Schlesinger, T. Xie, D. Jiang, L. Ge, Y. Huang, T.P. Birkland, W.C. Parks, D.M. Habiel, C.M. Hogaboam, S.A. Gharib, N. Deng, Z. Liu, and P. Chen, Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. Am J Pathol, 2018. 188(4): p. 1094-1103.
    57. Al-Otaibi, O., R. Khounganian, S. Anil, and R. Rajendran, Syndecan-1 (CD 138) surface expression marks cell type and differentiation in ameloblastoma, keratocystic odontogenic tumor, and dentigerous cyst. J Oral Pathol Med, 2013. 42(2): p. 186-93.
    58. Anttonen, A., M. Kajanti, P. Heikkila, M. Jalkanen, and H. Joensuu, Syndecan-1 expression has prognostic significance in head and neck carcinoma. Br J Cancer, 1999. 79(3-4): p. 558-64.
    59. Kurokawa, H., M. Zhang, S. Matsumoto, Y. Yamashita, T. Tanaka, K. Takamori, K. Igawa, M. Yoshida, H. Fukuyama, T. Takahashi, and S. Sakoda, Reduced syndecan-1 expression is correlated with the histological grade of malignancy at the deep invasive front in oral squamous cell carcinoma. J Oral Pathol Med, 2006. 35(5): p. 301-6.
    60. Mathe, M., Z. Suba, Z. Nemeth, P. Tatrai, T. Fule, G. Borgulya, J. Barabas, and I. Kovalszky, Stromal syndecan-1 expression is an adverse prognostic factor in oral carcinomas. Oral Oncol, 2006. 42(5): p. 493-500.
    61. Joensuu, H., A. Anttonen, M. Eriksson, R. Makitaro, H. Alfthan, V. Kinnula, and S. Leppa, Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res, 2002. 62(18): p. 5210-7.
    62. Anttonen, A., P. Heikkila, M. Kajanti, M. Jalkanen, and H. Joensuu, High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer, 2001. 32(3): p. 297-305.
    63. Ro, Y., T. Muramatsu, K. Shima, Y. Yajima, T. Shibahara, H. Noma, and M. Shimono, Correlation between reduction of syndecan-1 expression and clinico-pathological parameters in squamous cell carcinoma of tongue. Int J Oral Maxillofac Surg, 2006. 35(3): p. 252-7.
    64. Ansorge, W., B.S. Sproat, J. Stegemann, and C. Schwager, A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Methods, 1986. 13(6): p. 315-23.
    65. Chan, L.N., C. Hart, L. Guo, T. Nyberg, B.S. Davies, L.G. Fong, S.G. Young, B.J. Agnew, and F. Tamanoi, A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis, 2009. 30(20): p. 3598-606.
    66. Gleich, G.J. and D.A. Loegering, Immunobiology of eosinophils. Annu Rev Immunol, 1984. 2: p. 429-59.
    67. Gleich, G.J. and C.R. Adolphson, The eosinophilic leukocyte: structure and function. Adv Immunol, 1986. 39: p. 177-253.
    68. Dyer, K.D. and H.F. Rosenberg, The RNase a superfamily: generation of diversity and innate host defense. Mol Divers, 2006. 10(4): p. 585-97.
    69. Fan, T.C., H.T. Chang, I.W. Chen, H.Y. Wang, and M.D. Chang, A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95.
    70. McLaren, D.J., J.R. McKean, I. Olsson, P. Venges, and A.B. Kay, Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol, 1981. 3(4): p. 359-73.
    71. Hung, T.J., N. Tomiya, T.H. Chang, W.C. Cheng, P.H. Kuo, S.K. Ng, P.C. Lien, Y.C. Lee, and M.D. Chang, Functional characterization of ECP-heparin interaction: a novel molecular model. PLoS One, 2013. 8(12): p. e82585.
    72. Fang, S.L., T.C. Fan, H.W. Fu, C.J. Chen, C.S. Hwang, T.J. Hung, L.Y. Lin, and M.D. Chang, A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One, 2013. 8(3): p. e57318.
    73. Agostinis, P., K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, and J. Golab, Photodynamic therapy of cancer: an update. CA Cancer J Clin, 2011. 61(4): p. 250-81.
    74. Kofler, B., A. Romani, C. Pritz, T.B. Steinbichler, V.H. Schartinger, H. Riechelmann, and J. Dudas, Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines. Int J Mol Sci, 2018. 19(4).
    75. Wan, M.T. and J.Y. Lin, Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol, 2014. 7: p. 145-63.
    76. Jerjes, W., T. Upile, Z. Hamdoon, C. Alexander Mosse, M. Morcos, and C. Hopper, Photodynamic therapy outcome for T1/T2 N0 oral squamous cell carcinoma. Lasers Surg Med, 2011. 43(6): p. 463-9.
    77. Nelke, K.H., W. Pawlak, J. Leszczyszyn, and H. Gerber, Photodynamic therapy in head and neck cancer. Postepy Hig Med Dosw (Online), 2014. 68: p. 119-28.
    78. Theocharis, A.D., D.H. Vynios, N. Papageorgakopoulou, S.S. Skandalis, and D.A. Theocharis, Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol, 2003. 35(3): p. 376-90.
    79. Yip, G.W., M. Smollich, and M. Gotte, Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther, 2006. 5(9): p. 2139-48.
    80. Horai, T., N. Nakamura, R. Tateishi, and S. Hattori, Glycosaminoglycans in human lung cancer. Cancer, 1981. 48(9): p. 2016-21.
    81. Masuda, H., T. Ozeki, I. Takazono, and Y. Tanaka, Analyses of glycosaminoglycans in human lung cancer. Biochem Med Metab Biol, 1987. 37(3): p. 366-73.
    82. Hirabayashi, K., F. Numa, Y. Suminami, A. Murakami, T. Murakami, and H. Kato, Altered proliferative and metastatic potential associated with increased expression of syndecan-1. Tumour Biol, 1998. 19(6): p. 454-63.
    83. Barbareschi, M., P. Maisonneuve, D. Aldovini, M.G. Cangi, L. Pecciarini, F. Angelo Mauri, S. Veronese, O. Caffo, A. Lucenti, P.D. Palma, E. Galligioni, and C. Doglioni, High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer, 2003. 98(3): p. 474-83.
    84. Muramatsu, T., M. Saitoh, Y. Ro, T. Uekusa, E. Iwamura, K. Ohta, Y. Kohno, Y. Abiko, and M. Shimono, Inhibition of syndecan-1 expression and function in oral cancer cells. Oncol Rep, 2008. 20(6): p. 1353-7.
    85. Matsuda, K., H. Maruyama, F. Guo, J. Kleeff, J. Itakura, Y. Matsumoto, A.D. Lander, and M. Korc, Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res, 2001. 61(14): p. 5562-9.
    86. Kurosawa, N., G.Y. Chen, K. Kadomatsu, S. Ikematsu, S. Sakuma, and T. Muramatsu, Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J, 2001. 18(6): p. 499-507.
    87. Liu, B., A.W. Bell, S. Paranjpe, W.C. Bowen, J.S. Khillan, J.H. Luo, W.M. Mars, and G.K. Michalopoulos, Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice. Hepatology, 2010. 52(3): p. 1060-7.
    88. Strate, I., F. Tessadori, and J. Bakkers, Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development, 2015. 142(10): p. 1767-76.
    89. Li, Y., L. Miao, H. Cai, J. Ding, Y. Xiao, J. Yang, and D. Zhang, The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncol Lett, 2013. 6(6): p. 1565-1572.
    90. Salmivirta, M., F. Safaiyan, K. Prydz, M.S. Andresen, M. Aryan, and S.O. Kolset, Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells. Glycobiology, 1998. 8(10): p. 1029-36.
    91. De Klerk, D.P., D.V. Lee, and H.J. Human, Glycosaminoglycans of human prostatic cancer. J Urol, 1984. 131(5): p. 1008-12.
    92. Masuda, H., T. Ozeki, I. Takazono, and Y. Tanaka, Composition of glycosaminoglycans in human pancreatic cancer. Biochem Med Metab Biol, 1989. 41(3): p. 193-200.
    93. Asimakopoulou, A.P., A.D. Theocharis, G.N. Tzanakakis, and N.K. Karamanos, The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo, 2008. 22(3): p. 385-9.
    94. Zuo, L., S.M. Zhang, R.L. Hu, H.Q. Zhu, Q. Zhou, S.Y. Gui, Q. Wu, and Y. Wang, Correlation between expression and differentiation of endocan in colorectal cancer. World J Gastroenterol, 2008. 14(28): p. 4562-8.
    95. Raman, K. and B. Kuberan, Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol, 2010. 4(1): p. 20-31.
    96. Palaiologou, M., I. Delladetsima, and D. Tiniakos, CD138 (syndecan-1) expression in health and disease. Histol Histopathol, 2014. 29(2): p. 177-89.
    97. Ikuta, M., K.A. Podyma, K. Maruyama, S. Enomoto, and M. Yanagishita, Expression of heparanase in oral cancer cell lines and oral cancer tissues. Oral Oncol, 2001. 37(2): p. 177-84.
    98. Disease, G.B.D., I. Injury, and C. Prevalence, Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1789-1858.
    99. Bundela, S., A. Sharma, and P.S. Bisen, Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLoS One, 2015. 10(11): p. e0141719.
    100. Omura, K., Current status of oral cancer treatment strategies: surgical treatments for oral squamous cell carcinoma. Int J Clin Oncol, 2014. 19(3): p. 423-30.
    101. Muthukrishnan, N., G.A. Johnson, J. Lim, E.E. Simanek, and J.P. Pellois, TAT-mediated photochemical internalization results in cell killing by causing the release of calcium into the cytosol of cells. Biochim Biophys Acta, 2012. 1820(11): p. 1734-43.
    102. Huang, R. and E.K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 2017. 8(21): p. 35351-35367.
    103. Letoha, T., A. Keller-Pinter, E. Kusz, C. Kolozsi, Z. Bozso, G. Toth, C. Vizler, Z. Olah, and L. Szilak, Cell-penetrating peptide exploited syndecans. Biochim Biophys Acta, 2010. 1798(12): p. 2258-65.
    104. Kawaguchi, Y., T. Takeuchi, K. Kuwata, J. Chiba, Y. Hatanaka, I. Nakase, and S. Futaki, Syndecan-4 Is a Receptor for Clathrin-Mediated Endocytosis of Arginine-Rich Cell-Penetrating Peptides. Bioconjug Chem, 2016. 27(4): p. 1119-30.
    105. Purushothaman, A., T. Uyama, F. Kobayashi, S. Yamada, K. Sugahara, A.C. Rapraeger, and R.D. Sanderson, Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 2010. 115(12): p. 2449-57.
    106. Moldvay, J., M. Jackel, C. Paska, I. Soltesz, Z. Schaff, and A. Kiss, Distinct claudin expression profile in histologic subtypes of lung cancer. Lung Cancer, 2007. 57(2): p. 159-67.
    107. Heidari-Hamedani, G., R.R. Vives, A. Seffouh, N.A. Afratis, A. Oosterhof, T.H. van Kuppevelt, N.K. Karamanos, M. Metintas, A. Hjerpe, K. Dobra, and T. Szatmari, Syndecan-1 alters heparan sulfate composition and signaling pathways in malignant mesothelioma. Cell Signal, 2015. 27(10): p. 2054-67.
    108. Jung, O., V. Trapp-Stamborski, A. Purushothaman, H. Jin, H. Wang, R.D. Sanderson, and A.C. Rapraeger, Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis, 2016. 5: p. e202.
    109. Masola, V., G. Bellin, G. Gambaro, and M. Onisto, Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events. Cells, 2018. 7(12).
    110. Mukunyadzi, P., K. Liu, E.Y. Hanna, J.Y. Suen, and C.Y. Fan, Induced expression of syndecan-1 in the stroma of head and neck squamous cell carcinoma. Mod Pathol, 2003. 16(8): p. 796-801.
    111. Mise, I. and M. Vucic, Comparison of Syndecan-1 Immunohistochemical Expression in Lobular and Ductal Breast Carcinoma with Nodal Metastases. Anal Cell Pathol (Amst), 2018. 2018: p. 9432375.
    112. Migliorini, E., D. Thakar, J. Kuhnle, R. Sadir, D.P. Dyer, Y. Li, C. Sun, B.F. Volkman, T.M. Handel, L. Coche-Guerente, D.G. Fernig, H. Lortat-Jacob, and R.P. Richter, Cytokines and growth factors cross-link heparan sulfate. Open Biol, 2015. 5(8).
    113. Gkretsi, V. and T. Stylianopoulos, Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol, 2018. 8: p. 145.
    114. Stepp, M.A., Y. Liu, S. Pal-Ghosh, R.A. Jurjus, G. Tadvalkar, A. Sekaran, K. Losicco, L. Jiang, M. Larsen, L. Li, and S.H. Yuspa, Reduced migration, altered matrix and enhanced TGFbeta1 signaling are signatures of mouse keratinocytes lacking Sdc1. J Cell Sci, 2007. 120(Pt 16): p. 2851-63.
    115. Maritan, S.M., E.Y. Lian, and L.M. Mulligan, An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production. J Vis Exp, 2017(121).
    116. Thompson, S., B. Martinez-Burgo, K.M. Sepuru, K. Rajarathnam, J.A. Kirby, N.S. Sheerin, and S. Ali, Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci, 2017. 18(8).

    QR CODE